Subscribe to RSS
DOI: 10.1055/s-2003-43361
Regio- and Stereoselective Synthesis of α-Chiral 2-Substituted 4-Bromothiazoles from 2,4-Dibromothiazole by Bromine-Magnesium Exchange. Building Blocks for the Synthesis of Thiazolyl Peptides and Dolabellin
Publication History
Publication Date:
26 November 2003 (online)
Abstract
Fragment 6 of thiazolyl peptide GE 2270 D2 and fragment 11 of dolabellin were synthesized stereoselectively from 2,4-dibromothiazole (1) in three (6, 44% overall yield) and five synthetic steps (11, 63% overall yield). Key to the success of the strategy was a bromine-magnesium exchange, which proceeds with excellent regio- and chemoselectivity at carbon atom C-2 of 1.
Key words
asymmetric synthesis - magnesium - metalations - natural products - thiazoles
- General reviews on thiazoles:
-
1a
Kikelj D.Urleb U. In Science of Synthesis, Houben-Weyl Methods of Molecular Transformations Vol. 11:Schaumann E. Thieme; Stuttgart: 2002. p.627 -
1b
Liebscher J. In Houben-Weyl Methoden der Organischen Chemie 4th Ed., Vol. E 8b:Schaumann E. Thieme; Stuttgart: 1994. p.1 -
1c
Dondoni A.Merino P. In Comprehensive Heterocyclic Chemistry II Vol. 3:Katritzky AR.Rees CW.Scriven EFV.Bird CW. Pergamon; Oxford: 1996. p.373 -
1d
Metzger JV. In Comprehensive Heterocyclic Chemistry Vol. 6:Katritzky AR.Rees CW.Bird CW.Cheeseman GWH. Pergamon; Oxford: 1984. p.235 - Selected examples:
-
2a
Buchanan JL.Bohacek RS.Luke GP.Hatada M.Lu X.Dalgarno DC.Narula SS.Yuan R.Holt DA. Bioorg. Med. Chem. Lett. 1999, 9: 2353 -
2b
Bagley MC.Bashford KE.Hesketh CL.Moody CJ. J. Am. Chem. Soc. 2000, 122: 3301 -
2c
Xia Z.Smith CD. J. Org. Chem. 2001, 66: 3459 -
2d
Lee CB.Wu Z.Zhang F.Chappell MD.Stachel SJ.Chou T.-C.Guan Y.Danishefsky SJ. J. Am. Chem. Soc. 2001, 123: 5249 -
2e
Cetusic JRP.Green FR.Graupner PR.Oliver MP. Org. Lett. 2002, 4: 1307 - Selected examples:
-
3a
Wipf P.Venkatraman S. J. Org. Chem. 1996, 61: 8004 -
3b
Heck S.Dömling A. Synlett 2000, 424 -
3c
Boden CDJ.Pattenden G. J. Chem. Soc., Perkin Trans. 1 2000, 875 -
3d
Frontrodona X.Diaz S.Linden A.Villalgordo JM. Synthesis 2001, 2021 -
3e
Sugiyama H.Yokokawa F.Shioiri T. Tetrahedron 2003, 59: 6579 - 4
Reynaud P.Robba M.Moreau RC. Bull. Soc. Chim. Fr. 1962, 1735 -
5a
Bach T.Heuser S. Tetrahedron Lett. 2000, 41: 1707 -
5b
Bach T.Heuser S. Angew. Chem. Int. Ed. 2001, 40: 3184 -
5c
Bach T.Heuser S. J. Org. Chem. 2002, 67: 5789 -
5d
Bach T.Heuser S. Chem.-Eur. J. 2002, 8: 5585 -
5e
Bach T.Heuser S. Synlett 2002, 2089 - 6
Spieß A. PhD Thesis Technical University; Munich: 2003. -
7a
Amouroux R.Axiotis GP. Synthesis 1981, 270 -
7b
Chastrette M.Axiotis GP. Synthesis 1980, 889 -
8a
Dondoni A.Fantin G.Fogagnolo M.Medici A.Pedrini P. J. Org. Chem. 1988, 53: 1748 -
8b
Kelly TR.Jagoe CT.Gu Z. Tetrahedron Lett. 1991, 32: 4263 -
8c
Nickson TE. J. Fluorine Chem. 1991, 55: 173 -
8d
Nicolaou KC.He Y.Roschangar F.King NP.Vourloumis D.Li T. Angew. Chem. Int. Ed. 1998, 37: 84 -
8e
Ung AT.Pyne SG. Tetrahedron: Asymmetry 1998, 9: 1395 - 9
Abarbri A.Thibonnet J.Berillon L.Dehmell F.Rottländer M.Knochel P. J. Org. Chem. 2000, 65: 4618 - 10
Selva E.Ferrari P.Kurz M.Tavecchia P.Colombo L.Stelle S.Restelli E.Goldstein BP.Ripamonti F.Denaro M. J. Antibiot. 1995, 48: 1039 -
11a
Okumura K.Saito H.Shin C.Umemura K.Yoshimura J. Bull. Chem. Soc. Jpn. 1998, 71: 1863 -
11b
Okumura K.Suzuki T.Shin C. Heterocycles 2000, 53: 765 - 12
Brussee J.Loos WT.Kruse CG.van der Gen A. Tetrahedron 1990, 46: 979 - 13
Brussee J.Dofferhoff F.Kruse CG.van der G en A. Tetrahedron 1990, 46: 1653 - 16
Sone H.Kondo T.Kiryu M.Ishiwata H.Ojika M.Yamada K. J. Org. Chem. 1995, 60: 4774 - 17
Corey EJ.Shibata S.Bakshi RK. J. Org. Chem. 1988, 53: 2861
References
Procedure for the Conversion 1→4: At 0 °C, 6.60 mL (12.0 mmol) of a 1.80 M i-PrMgBr solution in Et2O was added dropwise to a solution of 2.92 g (12.0 mmol) 2,4-dibromothiazole in 30 mL of THF and the solution was stirred for 15 min at 0 °C. Neat TBS-protected mandelo-nitrile [12] (2.47 g, 10.0 mmol) was added dropwise. The mixture was stirred for 30 min at 0 °C and for another 30 min at r.t. After adding 10 mL of EtOH the reaction mixture was cooled to -78 °C and NaBH4 (0.76 g, 20.0 mmol) was added carefully in small portions. The mixture was stirred for 2 h at -78 °C and - after removing the cooling bath - over night at r.t. The reaction mixture was quenched with 25 mL of sat. aq NH4Cl solution and diluted with 200 mL Et2O. The organic layer was washed with 200 mL H2O and 100 mL brine and it was subsequently dried over Na2SO4. GC analysis indicated a facial diastereoselectivity of 79:21. After filtration the solvent was removed and the residue was purified by flash chromatography (pentane/Et2O: 75:25→50:50). Compound 4 (2.55 g, 6.18 mmol, 62%) was obtained as a yellow liquid. [α]D 20 -47.9 (c 1.5, CHCl3). 1H NMR (360 MHz, CDCl3): δ = -0.21 (s, 3 H), -0.06 (s, 3 H), 0.82 (s, 9 H), 2.02 (br s, 2 H), 4.41 (d, 3 J = 5.9 Hz, 1 H), 5.04 (d, 3 J = 5.9 Hz, 1 H), 7.09 (s, 1 H), 7.19-7.26 (m, 5 H). 13C NMR (90 MHz, CDCl3): δ = -5.3, -4.8, 18.0, 25.7, 60.6, 78.2, 117.0, 124.3, 127.0, 128.0, 128.1, 140.1, 173.9. Anal. Calcd for C17H25BrN2OSSi (413.45): C, 49.39; H, 6.09; N, 6.78. Found: C, 49.45; H, 6.11; N, 6.71. The erythro-diastereoisomer (0.47g, 1.13 mmol, 11%) was obtained as a yellow liquid.
15The relative configuration was proven by converting the aminoalcohol 4 and its erythro-diastereoisomer into the corresponding cyclic N-Boc protected N,O-acetals which were studied independently by 1H NMR spectroscopy. In addition, a known acetal [11] was prepared by carboxylation of product 5 at carbon atom C-4 (t-BuLi, CO2 in Et2O), transformation into the corresponding ester (EtI in DMF), TBS-deprotection (TBAF in THF) and acetal formation (2,2-dimethoxypropane, TsOH in CH2Cl2). The enantiomeric excess (95% ee) was determined by HPLC analysis of the N-Boc protected product 5 (column: Machery-Nagel, Nucleodex β-OH, 200 × 4.00 mm; eluent: H2O/MeCN 20:80→0:100 over 30 min; flow rate: 1.0 mL/min).
18Analytical data of compound 8: [α]D 20 +27.5 (c 0.80, CHCl3). 1H NMR (360 MHz, CDCl3): δ = 0.92 (d, 3 J = 6.8 Hz, 3 H), 1.02 (d, 3 J = 6.8 Hz, 3 H), 2.14-2.30 (m, 1 H), 2.60 (br s, 1 H), 4.80 (d, 3 J = 4.8 Hz, 1 H), 7.19 (s, 1 H). 13C NMR (90 MHz, CDCl3): δ = 16.2, 18.8, 34.9, 76.4, 116.7, 124.3, 175.6. Anal. Calcd for C7H10BrNOS (236.13): C, 35.61; H, 4.27; N, 5.93. Found: C, 35.81; H, 4.38; N, 5.87.
19Analytical data of compound 11: [α]D 20 +26.9 (c 1.15, CHCl3). 1H NMR (360 MHz, CDCl3): δ = 0.93 (d, 3 J = 6.6 Hz, 3 H), 1.03 (d, 3 J = 7.0 Hz, 3 H), 2.08 (br s, 1 H), 2.20-2.35 (m, 1 H), 3.94 (s, 3 H), 4.82 (d, 3 J = 4.8 Hz, 1 H), 8.16 (s, 1 H). 13C NMR (90 MHz, CDCl3): δ = 16.2, 18.9, 35.0, 52.4, 76.7, 127.6, 146.4, 161.9, 175.7. Anal. Calcd for C9H13NO3S (215.27): C, 50.21; H, 6.09; N, 6.51. Found: C, 49.91; H, 6.20; N, 6.29.