References
General reviews on thiazoles:
<A NAME="RG23503ST-1A">1a</A>
Kikelj D.
Urleb U.
In Science of Synthesis, Houben-Weyl Methods of Molecular Transformations
Vol. 11:
Schaumann E.
Thieme;
Stuttgart:
2002.
p.627
<A NAME="RG23503ST-1B">1b</A>
Liebscher J. In Houben-Weyl Methoden der Organischen Chemie
4th Ed., Vol. E 8b:
Schaumann E.
Thieme;
Stuttgart:
1994.
p.1
<A NAME="RG23503ST-1C">1c</A>
Dondoni A.
Merino P. In Comprehensive Heterocyclic Chemistry II
Vol. 3:
Katritzky AR.
Rees CW.
Scriven EFV.
Bird CW.
Pergamon;
Oxford:
1996.
p.373
<A NAME="RG23503ST-1D">1d</A>
Metzger JV. In Comprehensive Heterocyclic Chemistry
Vol. 6:
Katritzky AR.
Rees CW.
Bird CW.
Cheeseman GWH.
Pergamon;
Oxford:
1984.
p.235
Selected examples:
<A NAME="RG23503ST-2A">2a</A>
Buchanan JL.
Bohacek RS.
Luke GP.
Hatada M.
Lu X.
Dalgarno DC.
Narula SS.
Yuan R.
Holt DA.
Bioorg. Med. Chem. Lett.
1999,
9:
2353
<A NAME="RG23503ST-2B">2b</A>
Bagley MC.
Bashford KE.
Hesketh CL.
Moody CJ.
J. Am. Chem. Soc.
2000,
122:
3301
<A NAME="RG23503ST-2C">2c</A>
Xia Z.
Smith CD.
J. Org. Chem.
2001,
66:
3459
<A NAME="RG23503ST-2D">2d</A>
Lee CB.
Wu Z.
Zhang F.
Chappell MD.
Stachel SJ.
Chou T.-C.
Guan Y.
Danishefsky SJ.
J. Am. Chem. Soc.
2001,
123:
5249
<A NAME="RG23503ST-2E">2e</A>
Cetusic JRP.
Green FR.
Graupner PR.
Oliver MP.
Org. Lett.
2002,
4:
1307
Selected examples:
<A NAME="RG23503ST-3A">3a</A>
Wipf P.
Venkatraman S.
J. Org. Chem.
1996,
61:
8004
<A NAME="RG23503ST-3B">3b</A>
Heck S.
Dömling A.
Synlett
2000,
424
<A NAME="RG23503ST-3C">3c</A>
Boden CDJ.
Pattenden G.
J. Chem. Soc., Perkin Trans. 1
2000,
875
<A NAME="RG23503ST-3D">3d</A>
Frontrodona X.
Diaz S.
Linden A.
Villalgordo JM.
Synthesis
2001,
2021
<A NAME="RG23503ST-3E">3e</A>
Sugiyama H.
Yokokawa F.
Shioiri T.
Tetrahedron
2003,
59:
6579
<A NAME="RG23503ST-4">4</A>
Reynaud P.
Robba M.
Moreau RC.
Bull. Soc. Chim. Fr.
1962,
1735
<A NAME="RG23503ST-5A">5a</A>
Bach T.
Heuser S.
Tetrahedron Lett.
2000,
41:
1707
<A NAME="RG23503ST-5B">5b</A>
Bach T.
Heuser S.
Angew. Chem. Int. Ed.
2001,
40:
3184
<A NAME="RG23503ST-5C">5c</A>
Bach T.
Heuser S.
J. Org. Chem.
2002,
67:
5789
<A NAME="RG23503ST-5D">5d</A>
Bach T.
Heuser S.
Chem.-Eur. J.
2002,
8:
5585
<A NAME="RG23503ST-5E">5e</A>
Bach T.
Heuser S.
Synlett
2002,
2089
<A NAME="RG23503ST-6">6</A>
Spieß A.
PhD Thesis
Technical University;
Munich:
2003.
<A NAME="RG23503ST-7A">7a</A>
Amouroux R.
Axiotis GP.
Synthesis
1981,
270
<A NAME="RG23503ST-7B">7b</A>
Chastrette M.
Axiotis GP.
Synthesis
1980,
889
<A NAME="RG23503ST-8A">8a</A>
Dondoni A.
Fantin G.
Fogagnolo M.
Medici A.
Pedrini P.
J. Org. Chem.
1988,
53:
1748
<A NAME="RG23503ST-8B">8b</A>
Kelly TR.
Jagoe CT.
Gu Z.
Tetrahedron Lett.
1991,
32:
4263
<A NAME="RG23503ST-8C">8c</A>
Nickson TE.
J. Fluorine Chem.
1991,
55:
173
<A NAME="RG23503ST-8D">8d</A>
Nicolaou KC.
He Y.
Roschangar F.
King NP.
Vourloumis D.
Li T.
Angew. Chem. Int. Ed.
1998,
37:
84
<A NAME="RG23503ST-8E">8e</A>
Ung AT.
Pyne SG.
Tetrahedron: Asymmetry
1998,
9:
1395
<A NAME="RG23503ST-9">9</A>
Abarbri A.
Thibonnet J.
Berillon L.
Dehmell F.
Rottländer M.
Knochel P.
J. Org. Chem.
2000,
65:
4618
<A NAME="RG23503ST-10">10</A>
Selva E.
Ferrari P.
Kurz M.
Tavecchia P.
Colombo L.
Stelle S.
Restelli E.
Goldstein BP.
Ripamonti F.
Denaro M.
J. Antibiot.
1995,
48:
1039
<A NAME="RG23503ST-11A">11a</A>
Okumura K.
Saito H.
Shin C.
Umemura K.
Yoshimura J.
Bull. Chem. Soc. Jpn.
1998,
71:
1863
<A NAME="RG23503ST-11B">11b</A>
Okumura K.
Suzuki T.
Shin C.
Heterocycles
2000,
53:
765
<A NAME="RG23503ST-12">12</A>
Brussee J.
Loos WT.
Kruse CG.
van der Gen A.
Tetrahedron
1990,
46:
979
<A NAME="RG23503ST-13">13</A>
Brussee J.
Dofferhoff F.
Kruse CG.
van der G en A.
Tetrahedron
1990,
46:
1653
<A NAME="RG23503ST-14">14</A>
Procedure for the Conversion 1→4: At 0 °C, 6.60 mL (12.0 mmol) of a 1.80 M i-PrMgBr solution in Et2O was added dropwise to a solution of 2.92 g (12.0 mmol) 2,4-dibromothiazole in 30
mL of THF and the solution was stirred for 15 min at 0 °C. Neat TBS-protected mandelo-nitrile
[12]
(2.47 g, 10.0 mmol) was added dropwise. The mixture was stirred for 30 min at 0 °C
and for another 30 min at r.t. After adding 10 mL of EtOH the reaction mixture was
cooled to -78 °C and NaBH4 (0.76 g, 20.0 mmol) was added carefully in small portions. The mixture was stirred
for 2 h at -78 °C and - after removing the cooling bath - over night at r.t. The reaction
mixture was quenched with 25 mL of sat. aq NH4Cl solution and diluted with 200 mL Et2O. The organic layer was washed with 200 mL H2O and 100 mL brine and it was subsequently dried over Na2SO4. GC analysis indicated a facial diastereoselectivity of 79:21. After filtration the
solvent was removed and the residue was purified by flash chromatography (pentane/Et2O: 75:25→50:50). Compound 4 (2.55 g, 6.18 mmol, 62%) was obtained as a yellow liquid. [α]D
20 -47.9 (c 1.5, CHCl3). 1H NMR (360 MHz, CDCl3): δ = -0.21 (s, 3 H), -0.06 (s, 3 H), 0.82 (s, 9 H), 2.02 (br s, 2 H), 4.41 (d, 3
J = 5.9 Hz, 1 H), 5.04 (d, 3
J = 5.9 Hz, 1 H), 7.09 (s, 1 H), 7.19-7.26 (m, 5 H).
13C NMR (90 MHz, CDCl3): δ = -5.3, -4.8, 18.0, 25.7, 60.6, 78.2, 117.0, 124.3, 127.0, 128.0, 128.1, 140.1,
173.9. Anal. Calcd for C17H25BrN2OSSi (413.45): C, 49.39; H, 6.09; N, 6.78. Found: C, 49.45; H, 6.11; N, 6.71. The
erythro-diastereoisomer (0.47g, 1.13 mmol, 11%) was obtained as a yellow liquid.
<A NAME="RG23503ST-15">15</A>
The relative configuration was proven by converting the aminoalcohol 4 and its erythro-diastereoisomer into the corresponding cyclic N-Boc protected N,O-acetals which were studied independently by 1H NMR spectroscopy. In addition, a known acetal
[11]
was prepared by carboxylation of product 5 at carbon atom C-4 (t-BuLi, CO2 in Et2O), transformation into the corresponding ester (EtI in DMF), TBS-deprotection (TBAF
in THF) and acetal formation (2,2-dimethoxypropane, TsOH in CH2Cl2). The enantiomeric excess (95% ee) was determined by HPLC analysis of the N-Boc protected
product 5 (column: Machery-Nagel, Nucleodex β-OH, 200 × 4.00 mm; eluent: H2O/MeCN 20:80→0:100 over 30 min; flow rate: 1.0 mL/min).
<A NAME="RG23503ST-16">16</A>
Sone H.
Kondo T.
Kiryu M.
Ishiwata H.
Ojika M.
Yamada K.
J. Org. Chem.
1995,
60:
4774
<A NAME="RG23503ST-17">17</A>
Corey EJ.
Shibata S.
Bakshi RK.
J. Org. Chem.
1988,
53:
2861
<A NAME="RG23503ST-18">18</A>
Analytical data of compound 8: [α]D
20 +27.5 (c 0.80, CHCl3). 1H NMR (360 MHz, CDCl3): δ = 0.92 (d, 3
J = 6.8 Hz, 3 H), 1.02 (d, 3
J = 6.8 Hz, 3 H), 2.14-2.30 (m, 1 H), 2.60 (br s, 1 H), 4.80 (d, 3
J = 4.8 Hz, 1 H), 7.19 (s, 1 H). 13C NMR (90 MHz, CDCl3): δ = 16.2, 18.8, 34.9, 76.4, 116.7, 124.3, 175.6. Anal. Calcd for C7H10BrNOS (236.13): C, 35.61; H, 4.27; N, 5.93. Found: C, 35.81; H, 4.38; N, 5.87.
<A NAME="RG23503ST-19">19</A>
Analytical data of compound 11: [α]D
20 +26.9 (c 1.15, CHCl3). 1H NMR (360 MHz, CDCl3): δ = 0.93 (d, 3
J = 6.6 Hz, 3 H), 1.03 (d, 3
J = 7.0 Hz, 3 H), 2.08 (br s, 1 H), 2.20-2.35 (m, 1 H), 3.94 (s, 3 H), 4.82 (d, 3
J = 4.8 Hz, 1 H), 8.16 (s, 1 H). 13C NMR (90 MHz, CDCl3): δ = 16.2, 18.9, 35.0, 52.4, 76.7, 127.6, 146.4, 161.9, 175.7. Anal. Calcd for C9H13NO3S (215.27): C, 50.21; H, 6.09; N, 6.51. Found: C, 49.91; H, 6.20; N, 6.29.