References
General reviews on thiazoles:
1a
Kikelj D.
Urleb U.
In Science of Synthesis, Houben-Weyl Methods of Molecular Transformations
Vol. 11:
Schaumann E.
Thieme;
Stuttgart:
2002.
p.627
1b
Liebscher J. In Houben-Weyl Methoden der Organischen Chemie
4th Ed., Vol. E 8b:
Schaumann E.
Thieme;
Stuttgart:
1994.
p.1
1c
Dondoni A.
Merino P. In Comprehensive Heterocyclic Chemistry II
Vol. 3:
Katritzky AR.
Rees CW.
Scriven EFV.
Bird CW.
Pergamon;
Oxford:
1996.
p.373
1d
Metzger JV. In Comprehensive Heterocyclic Chemistry
Vol. 6:
Katritzky AR.
Rees CW.
Bird CW.
Cheeseman GWH.
Pergamon;
Oxford:
1984.
p.235
Selected examples:
2a
Buchanan JL.
Bohacek RS.
Luke GP.
Hatada M.
Lu X.
Dalgarno DC.
Narula SS.
Yuan R.
Holt DA.
Bioorg. Med. Chem. Lett.
1999,
9:
2353
2b
Bagley MC.
Bashford KE.
Hesketh CL.
Moody CJ.
J. Am. Chem. Soc.
2000,
122:
3301
2c
Xia Z.
Smith CD.
J. Org. Chem.
2001,
66:
3459
2d
Lee CB.
Wu Z.
Zhang F.
Chappell MD.
Stachel SJ.
Chou T.-C.
Guan Y.
Danishefsky SJ.
J. Am. Chem. Soc.
2001,
123:
5249
2e
Cetusic JRP.
Green FR.
Graupner PR.
Oliver MP.
Org. Lett.
2002,
4:
1307
Selected examples:
3a
Wipf P.
Venkatraman S.
J. Org. Chem.
1996,
61:
8004
3b
Heck S.
Dömling A.
Synlett
2000,
424
3c
Boden CDJ.
Pattenden G.
J. Chem. Soc., Perkin Trans. 1
2000,
875
3d
Frontrodona X.
Diaz S.
Linden A.
Villalgordo JM.
Synthesis
2001,
2021
3e
Sugiyama H.
Yokokawa F.
Shioiri T.
Tetrahedron
2003,
59:
6579
4
Reynaud P.
Robba M.
Moreau RC.
Bull. Soc. Chim. Fr.
1962,
1735
5a
Bach T.
Heuser S.
Tetrahedron Lett.
2000,
41:
1707
5b
Bach T.
Heuser S.
Angew. Chem. Int. Ed.
2001,
40:
3184
5c
Bach T.
Heuser S.
J. Org. Chem.
2002,
67:
5789
5d
Bach T.
Heuser S.
Chem.-Eur. J.
2002,
8:
5585
5e
Bach T.
Heuser S.
Synlett
2002,
2089
6
Spieß A.
PhD Thesis
Technical University;
Munich:
2003.
7a
Amouroux R.
Axiotis GP.
Synthesis
1981,
270
7b
Chastrette M.
Axiotis GP.
Synthesis
1980,
889
8a
Dondoni A.
Fantin G.
Fogagnolo M.
Medici A.
Pedrini P.
J. Org. Chem.
1988,
53:
1748
8b
Kelly TR.
Jagoe CT.
Gu Z.
Tetrahedron Lett.
1991,
32:
4263
8c
Nickson TE.
J. Fluorine Chem.
1991,
55:
173
8d
Nicolaou KC.
He Y.
Roschangar F.
King NP.
Vourloumis D.
Li T.
Angew. Chem. Int. Ed.
1998,
37:
84
8e
Ung AT.
Pyne SG.
Tetrahedron: Asymmetry
1998,
9:
1395
9
Abarbri A.
Thibonnet J.
Berillon L.
Dehmell F.
Rottländer M.
Knochel P.
J. Org. Chem.
2000,
65:
4618
10
Selva E.
Ferrari P.
Kurz M.
Tavecchia P.
Colombo L.
Stelle S.
Restelli E.
Goldstein BP.
Ripamonti F.
Denaro M.
J. Antibiot.
1995,
48:
1039
11a
Okumura K.
Saito H.
Shin C.
Umemura K.
Yoshimura J.
Bull. Chem. Soc. Jpn.
1998,
71:
1863
11b
Okumura K.
Suzuki T.
Shin C.
Heterocycles
2000,
53:
765
12
Brussee J.
Loos WT.
Kruse CG.
van der Gen A.
Tetrahedron
1990,
46:
979
13
Brussee J.
Dofferhoff F.
Kruse CG.
van der G en A.
Tetrahedron
1990,
46:
1653
14
Procedure for the Conversion 1→4: At 0 °C, 6.60 mL (12.0 mmol) of a 1.80 M i-PrMgBr solution in Et2O was added dropwise to a solution of 2.92 g (12.0 mmol) 2,4-dibromothiazole in 30 mL of THF and the solution was stirred for 15 min at 0 °C. Neat TBS-protected mandelo-nitrile
[12]
(2.47 g, 10.0 mmol) was added dropwise. The mixture was stirred for 30 min at 0 °C and for another 30 min at r.t. After adding 10 mL of EtOH the reaction mixture was cooled to -78 °C and NaBH4 (0.76 g, 20.0 mmol) was added carefully in small portions. The mixture was stirred for 2 h at -78 °C and - after removing the cooling bath - over night at r.t. The reaction mixture was quenched with 25 mL of sat. aq NH4Cl solution and diluted with 200 mL Et2O. The organic layer was washed with 200 mL H2O and 100 mL brine and it was subsequently dried over Na2SO4. GC analysis indicated a facial diastereoselectivity of 79:21. After filtration the solvent was removed and the residue was purified by flash chromatography (pentane/Et2O: 75:25→50:50). Compound 4 (2.55 g, 6.18 mmol, 62%) was obtained as a yellow liquid. [α]D
20 -47.9 (c 1.5, CHCl3). 1H NMR (360 MHz, CDCl3): δ = -0.21 (s, 3 H), -0.06 (s, 3 H), 0.82 (s, 9 H), 2.02 (br s, 2 H), 4.41 (d, 3
J = 5.9 Hz, 1 H), 5.04 (d, 3
J = 5.9 Hz, 1 H), 7.09 (s, 1 H), 7.19-7.26 (m, 5 H).
13C NMR (90 MHz, CDCl3): δ = -5.3, -4.8, 18.0, 25.7, 60.6, 78.2, 117.0, 124.3, 127.0, 128.0, 128.1, 140.1, 173.9. Anal. Calcd for C17H25BrN2OSSi (413.45): C, 49.39; H, 6.09; N, 6.78. Found: C, 49.45; H, 6.11; N, 6.71. The erythro-diastereoisomer (0.47g, 1.13 mmol, 11%) was obtained as a yellow liquid.
15 The relative configuration was proven by converting the aminoalcohol 4 and its erythro-diastereoisomer into the corresponding cyclic N-Boc protected N,O-acetals which were studied independently by 1H NMR spectroscopy. In addition, a known acetal
[11]
was prepared by carboxylation of product 5 at carbon atom C-4 (t-BuLi, CO2 in Et2O), transformation into the corresponding ester (EtI in DMF), TBS-deprotection (TBAF in THF) and acetal formation (2,2-dimethoxypropane, TsOH in CH2Cl2). The enantiomeric excess (95% ee) was determined by HPLC analysis of the N-Boc protected product 5 (column: Machery-Nagel, Nucleodex β-OH, 200 × 4.00 mm; eluent: H2O/MeCN 20:80→0:100 over 30 min; flow rate: 1.0 mL/min).
16
Sone H.
Kondo T.
Kiryu M.
Ishiwata H.
Ojika M.
Yamada K.
J. Org. Chem.
1995,
60:
4774
17
Corey EJ.
Shibata S.
Bakshi RK.
J. Org. Chem.
1988,
53:
2861
18 Analytical data of compound 8: [α]D
20 +27.5 (c 0.80, CHCl3). 1H NMR (360 MHz, CDCl3): δ = 0.92 (d, 3
J = 6.8 Hz, 3 H), 1.02 (d, 3
J = 6.8 Hz, 3 H), 2.14-2.30 (m, 1 H), 2.60 (br s, 1 H), 4.80 (d, 3
J = 4.8 Hz, 1 H), 7.19 (s, 1 H). 13C NMR (90 MHz, CDCl3): δ = 16.2, 18.8, 34.9, 76.4, 116.7, 124.3, 175.6. Anal. Calcd for C7H10BrNOS (236.13): C, 35.61; H, 4.27; N, 5.93. Found: C, 35.81; H, 4.38; N, 5.87.
19 Analytical data of compound 11: [α]D
20 +26.9 (c 1.15, CHCl3). 1H NMR (360 MHz, CDCl3): δ = 0.93 (d, 3
J = 6.6 Hz, 3 H), 1.03 (d, 3
J = 7.0 Hz, 3 H), 2.08 (br s, 1 H), 2.20-2.35 (m, 1 H), 3.94 (s, 3 H), 4.82 (d, 3
J = 4.8 Hz, 1 H), 8.16 (s, 1 H). 13C NMR (90 MHz, CDCl3): δ = 16.2, 18.9, 35.0, 52.4, 76.7, 127.6, 146.4, 161.9, 175.7. Anal. Calcd for C9H13NO3S (215.27): C, 50.21; H, 6.09; N, 6.51. Found: C, 49.91; H, 6.20; N, 6.29.