References
For recent reviews covering phase-transfer alkylation of glycine imines see:
1a
Maruoka K.
Ooi T.
Chem. Rev.
2003,
103:
3013
1b
O’Donnell MJ.
Aldrichimica Acta
2001,
34:
3
2a
Lygo B.
Allbutt B.
James SR.
Tetrahedron Lett.
2003,
44:
5629
2b
Lygo B.
Andrews BI.
Crosby J.
Peterson JA.
Tetrahedron Lett.
2002,
43:
8015
2c
Lygo B.
Humphreys LD.
Tetrahedron Lett.
2002,
43:
6677
2d
Lygo B.
Crosby J.
Peterson JA.
Tetrahedron
2001,
57:
6447
2e
Lygo B.
Crosby J.
Lowdon TR.
Peterson JA.
Wainwright PG.
Tetrahedron
2001,
57:
2403
2f
Lygo B.
Crosby J.
Lowdon TR.
Wainwright PG.
Tetrahedron
2001,
57:
2391
2g
Lygo B.
Crosby J.
Peterson JA.
Tetrahedron Lett.
1999,
40:
1385
2h
Lygo B.
Wainwright PG.
Tetrahedron Lett.
1997,
38:
8595
For examples of asymmetric PTC alkylation of glycine imines other than tert-butyl ester 1a see ref. 1 and:
3a
Ooi T.
Tayama E.
Maruoka K.
Angew. Chem. Int. Ed.
2003,
42:
579 ; amides
3b
Mazon P.
Chinchilla R.
Najera C.
Guillena G.
Kreiter R.
Gebbink .
R JMK.
van Koten G.
Tetrahedron: Asymmetry
2002,
13:
2181 ; iso-propyl ester
3c
Vyskocil S.
Meca L.
Tislerova I.
Cisarova I.
Polasek M.
Harutyunyan SR.
Belokon YN.
Stead RMJ.
Farrugia L.
Lockhart SC.
Mitchell WL.
Kocovsky P.
Chem.-Eur. J.
2002,
8:
4633 ; Ni salt of PBP imine
For leading references to asymmetric PTC alkylations of glycine imine1a not covered in ref.1 and ref.2, see:
4a
Ooi T.
Kameda M.
Maruoka K.
J. Am. Chem. Soc.
2003,
125:
5139
4b
Mase N.
Ohno T.
Hoshikawa N.
Ohishi K.
Morimoto H.
Yoda H.
Takabe K.
Tetrahedron Lett.
2003,
44:
4073
4c
Park HG.
Jeong BS.
Yoo MS.
Lee JH.
Park BS.
Kim MJ.
Jew SS.
Tetrahedron Lett.
2003,
44:
3497
4d
Thierry B.
Plaquevent JC.
Cahard D.
Tetrahedron: Asymmetry
2003,
14:
1671
4e
Danelli T.
Annunziata R.
Benaglia M.
Cinquini M.
Cozzi F.
Tocco G.
Tetrahedron: Asymmetry
2003,
14:
461
4f
Okino T.
Takemoto Y.
Org. Lett.
2001,
3:
1515
4g
Chen G.
Deng Y.
Gong L.
Mi A.
Cui X.
Jiang Y.
Choi MCK.
Chan ASC.
Tetrahedron: Asymmetry
2001,
12:
1567
4h
O’Donnell MJ.
Delgado F.
Dominguez E.
de Blas J.
Scott WL.
Tetrahedron: Asymmetry
2001,
12:
821
See for example ref.4a and:
5a
Kim S.
Lee J.
Lee T.
Park HG.
Kim D.
Org. Lett.
2003,
5:
2703
5b
Armstrong A.
Scutt JN.
Org. Lett.
2003,
5:
2331
5c
Lygo B.
Andrews BI.
Tetrahedron Lett.
2003,
44:
4499
5d
Boisnard S.
Carbonnelle A.-C.
Zhu J.
Org. Lett.
2001,
3:
2061
5e
Lygo B.
Tetrahedron Lett.
1999,
40:
1389
6
O’Donnell MJ.
Polt RL.
J. Org. Chem.
1982,
47:
2663
For examples that illustrate of the utility of this see:
7a
Mitchell SA.
Pratt MR.
Hruby VJ.
Polt R.
J. Org. Chem.
2001,
66:
2327
7b
Tilley JW.
Sarabu R.
Wagner R.
Mulkerins K.
J. Org. Chem.
1990,
55:
906
7c
Felix AM.
Heimer EP.
Lambros TJ.
Tzougraki C.
Meienhofer J.
J. Org. Chem.
1978,
43:
4194
8
O’Donnell MJ.
Sennett WD.
Wu S.
J. Am. Chem. Soc.
1989,
111:
2353
9
Representative Procedure: A solution of salt ent-4 (1.2 mg, 1 mol%) and imine 1b (50 mg, 0.12 mmol) in toluene (4 mL) was cooled to 0 °C, degassed, and placed under an argon atmosphere. tert-Butyl bromoacetate (22 µL, 0.14 mmol) was added followed by degassed 15 M aq KOH (1mL). The resulting mixture stirred at 1500 rpm for 45 min, then diluted with H2O (5 mL) and extracted with EtOAc (3 × 4 mL). The combined organic extracts were dried (MgSO4) and concentrated under reduced pressure. Residual tert-butyl bromoacetate was removed under vacuum (1 mm Hg, r.t.) to afford imine 2b′′′ as a colourless oil (64 mg, 100%, 86% ee). 1H NMR (400 MHz, CDCl3): δ = 7.62-7.60 (2 H, m, ArH), 7.41-7.23 (16 H, m, ArH), 7.16-7.13 (2 H, m, ArH), 6.89 (1 H, s, OCHPh2), 4.58 (1 H, dd, J = 7.5, 5.5 Hz, H-2), 2.99 (1 H, dd, J = 15.5, 5.5 Hz, H-3a), 2.85 (1 H, dd, J = 15.5, 7.5 Hz, H-3b), 1.35 (9H, s, t-Bu). 13C NMR (100 MHz, CDCl3): δ = 171.8 (C), 170.0 (C), 139.9 (C), 139.9 (C), 139.6 (C), 136.0 (C), 130.5 (CH), 129.0 (CH), 128.8 (CH), 128.5 (CH), 128.0 (CH), 128.0 (CH), 127.9 (CH), 127.4 (CH), 127.1 (CH), 80.8 (C), 77.5 (CH), 62.3 (CH), 39.5 (CH2), 28.1 (CH3). HPLC: Chiralpak AD column (150 × 2.1 mm), hexane/i-propanol (97.5/2.5), 0.2 mL/min, Rt = 13.9 min (R)-isomer, 18.8 min (S)-isomer.
Imine 2b′′′ (38 mg) was then dissolved in THF (1 mL) and treated with 15% aq citric acid (1 mL). The resulting solution was stirred at r.t. for 3 h, then washed with Et2O (3 × 2 mL). The aqueous layer was basified (sat. aq K2CO3) and extracted with CHCl3 (3 × 5 mL). The combined organic extracts were dried (MgSO4) and concentrated under reduced pressure to afford amine 5 as a colourless oil (22 mg, 85%). 1H NMR (400 MHz, CDCl3): δ = 7.36-7.27 (10 H, m, ArH), 6.92 (1 H, s, OCHPh2), 3.84 (1 H, dd, J = 6.5, 4.5 Hz, H-2), 2.80 (1 H, dd, J = 16.5, 4.5 Hz, H-3a), 2.72
(1 H, dd, J = 16.5, 6.5 Hz, H-3b), 1.88 (2 H, s, broad, NH2), 1.38 (9 H, s, t-Bu). 13C NMR (100 MHz, CDCl3): δ = 173.5 (C), 170.3 (C), 139.8 (C), 128.6 (CH), 128.6 (CH), 128.2 (CH), 128.1 (CH), 127.2 (CH), 127.2 (CH), 81.5 (C), 77.8 (CH), 51.6 (CH), 39.8 (CH2), 28.1 (CH3)
10
Corey EJ.
Xu F.
Noe MC.
J. Am. Chem. Soc.
1997,
119:
12414