References
1
Shibata I.
Moriuchi-Kawakami T.
Tanizawa D.
Suwa T.
Sugiyama E.
Matsuda H.
Baba A.
J. Org. Chem.
1998,
63:
383
2
Suwa T.
Sugiyama E.
Shibata I.
Baba A.
Synlett
2000,
556
3 For most recent work, see: Lee C.-F.
Yang L.-M.
Hwu T.-Y.
Feng A.-S.
Tseng J.-C.
Luh T.-Y.
J. Am. Chem. Soc.
2000,
122:
4992 ; and references therein
For a review see:
4a
Gossauer A. In Pyrrole, Houben-Weyl, Methods in Organic Chemistry
Vol. E6a/1:
Thieme;
Stuttgart:
1994.
p.556
4b See also: Boger DL.
Boyce CW.
Labroli MA.
Sehon CA.
Jin Q.
J. Am. Chem. Soc.
1999,
121:
54
4c
Fürstner A.
Weintritt H.
J. Am. Chem. Soc.
1998,
120:
2817
4d See further: Sayah B.
Pelloux-Leon N.
Vallee Y.
J. Org. Chem.
2000,
65:
2824
4e
Liu J.-H.
Yang Q.-C.
Mak TCW.
Wong HNC.
J. Org. Chem.
2000,
65:
3587
For formation of the 2-monosubstituted pyrrole ring from γ-keto aldehydes or related precursors, see:
5a Ref.
[4a]
5b See also: Gadzhily RA.
Fedoseev VM.
Dzhafarov VG.
Chem. Heterocycl. Compd.
1990,
26:
874
5c
Engel N.
Steglich W.
Angew. Chem., Int. Ed. Engl.
1978,
17:
676
5d For syntheses of 2-monosubstituted pyrroles via acylation-reduction or alkylation of pyrrole see, for example: Garrido DOA.
Buldain G.
Frydman B.
J. Org. Chem.
1984,
49:
2619
5e
Muchowski JM.
Solas DR.
J. Org. Chem.
1984,
49:
203
5f See also: Kel’in AV.
Sromek AW.
Gevorgyan V.
J. Am. Chem. Soc.
2001,
123:
2074
6 For preparation of 1, see: Kobayashi Y.
Nakano M.
Kumar GB.
Kishihara K.
J. Org. Chem.
1998,
63:
7505
7
Typical Experimental Procedure (see Table
[1]
, entry 3).
To a dry nitrogen-filled 10 mL round-bottomed flask containing di-n-butyltin dihydride (Bu2SnH2, 0.166 g, 0.5 mmol) in 1,4-dioxane (1 mL) was added di-n-butyltin diiodide (Bu2SnI2, 0.243 g, 0.5 mmol) and HMPA (0.180 g, 1 mmol) at r.t. After stirring at r.t. for 10 min, the resulting solution of di-n-butyliodotin hydride (Bu2SnIH, 1 mmol) was cooled to 0 °C. Carbonyl substrate(1a) (0.196 g, 1 mmol), and p-chloroaniline (0.128 g) were added successively, and stirring was continued at 0 ºC for 2 h. The IR absorption band of Sn-H (1850 cm-1) disappeared, which indicated the formation of stannylamide (II). The mixture was heated to 80 ºC and stirred for 2 h. The reaction was quenched with MeOH (0.5 mL), and the residue was chromatographed on silica-gel column [FL100-DX (Fuji silysia)]. Elution with hexane gave pyrrole 2a (0.234 g, 81%).
Spectral data of representative products are as follows.
Compound 2a. IR: 1596, 1496 cm-1. 1H NMR (CDCl3): δ = 0.86 (t, J = 6.83 Hz, 3 H), 1.21-1.30 (m, 10 H), 1.44-1.55 (m, 2 H), 2.49 (t, J = 7.81 Hz, 2 H), 6.04-6.06 (m, 1 H), 6.21 (t, J = 2.93 Hz, 1 H), 6.67-6.69 (m, 1 H), 7.22 (d, J = 8.79 Hz, 2 H), 7.39 (d, J = 8.79 Hz, 2 H). 13C NMR (CDCl3): δ = 14.08, 22.63, 26.65, 29.13, 29.27, 29.30, 31.57, 31.80, 107.10, 108.26, 121.30, 127.30, 129.18, 132.77, 134.21, 139.06. HRMS: calcd for C18H24NCl: 289.1597. Found: 289.1597.
Compound 2e. IR: 1496 cm-1. 1H NMR (CDCl3): δ = 1.75-1.87 (m, 2 H), 2.51-2.59 (m, 4 H), 6.06-6.09 (m, 1 H), 6.18-6.21 (m, 1 H), 6.66-6.68 (m, 1 H), 7.05-7.35 (m, 9 H). 13C NMR (CDCl3): δ = 26.09, 30.67, 35.29, 107.39, 108.32, 121.46, 125.71, 127.19, 128.25, 128.31, 129.20, 132.76, 133.49, 138.87, 141.86. HRMS: calcd for C19H18NCl: 295.1128. Found: 295.1125.
Compound 2f. IR: 1600, 1492 cm-1. 1H NMR (CDCl3): δ = 6.35-6.38 (m, 1 H), 6.42-6.44 (m, 1 H), 6.90-6.91 (m, 1 H), 7.09 (d, J = 8.40 Hz, 2 H), 7.13-7.24 (m, 5 H), 7.28 (d, J = 8.40 Hz, 2 H). 13C NMR (CDCl3): δ = 109.60, 110.99, 124.16, 126.49, 126.76, 128.18, 128.32, 129.13, 132.19, 132.59, 133.79, 139.01. HRMS: calcd for C16H12NCl: 253.0658. Found: 253.0653.
8
Kawakami T.
Shibata I.
Baba A.
J. Org. Chem.
1996,
61:
82
We have already reported the increase of nucleophilicity of Sn-N bonds by pentacoordination, see:
9a
Shibata I.
Baba A.
Iwasaki H.
Matsuda H.
J. Org. Chem.
1986,
51:
2177
9b
Baba A.
Kishiki H.
Shibata I.
Matsuda H.
Organometallics
1984,
4:
1329
9c
Shibata I.
Baba A.
Matsuda H.
J. Chem. Soc., Chem. Commun.
1986,
1703
9d
Shibata I.
Nakamura K.
Baba A.
Matsuda H.
Bull. Chem. Soc. Jpn.
1989,
62:
853
10 It seems that chlorodibutyltin amide moiety (Bu2ClSnN-) does not has enough nucleophilicity to cause cyclization because of the electron withdrawing character of Cl-substituent (entry 4).