Subscribe to RSS
DOI: 10.1055/s-2003-43427
Was gibt es Neues in der multiplen Sklerose?
What is New in MS Treatment?Publication History
Publication Date:
06 November 2003 (online)
Zusammenfassung
Nach der Erweiterung der MS-Therapie in den zurückliegenden Jahren um eine Reihe von Immunmodulatoren wie den β-Interferonen und Glatiramerazetat gibt es aktuell eine Vielzahl von Substanzen, für deren Wirksamkeit sich sowohl in In-vitro-Untersuchungen als auch im Tiermodell der MS gute Belege gefunden haben und von denen einige sich bereits in der klinischen Erprobung befinden. Neben der Demyelinisierung und dem axonalen Schaden als wichtigen Pathomechanismen bei der MS wird zunehmend auch die Bedeutung von pathologischen Veränderungen im Bereich der Blut-Hirn-Schranke deutlich. Aufbauend auf diesen Erkenntnissen lassen sich neue Therapieprinzipien für die Behandlung der MS ableiten. Die Beschreibung von Subtypen bei der MS-Erkrankung anhand von histopathologischen Untersuchungen weist auf die Existenz von verschiedenen Pathomechanismen hin. Ziel wird es sein, diese Erkenntnisse über die zugrunde liegenden Unterschiede für eine individuell adaptierte Therapie zur besseren Behandlung des einzelnen Patienten umzusetzen. Als zukünftige Kandidaten für die Behandlung der MS gelten eine Reihe von monoklonalen Antikörpern, die Komponenten der Immunfunktion blockieren können wie z. B. Natalizumab (Antegren®). Weitere potenzielle Kandidaten sind die bisher als Cholesterinsenker eingesetzten Statine, ein charakteristisches Schwangerschaftshormon, Östriol, (Nerven-)Wachstumsfaktoren (u. a. Neurotrophine) und andere (Neuro-)Protektiva. Der Artikel stellt aktuelle Untersuchungsergebnisse zu diesen Substanzen vor und diskutiert ihre Wirkungsmechanismen.
Abstract
In the last years, MS therapy has been extended by usage of immunomodulators like interferon-β and glatirameracetate. Recently, several new molecules showed effectiveness in animal models of MS as well as in vitro studies and are now under further clinical investigation. Besides demyelination and axonal damage as important mechanisms in MS pathology alterations of the blood brain barrier have been identified to play an important role. Based on these experiences new therapeutical approaches for MS treatment are in preparation. Subtypes of MS were described by histopathological findings which indicate different underlying pathomechanisms. Understanding of these differences will end in a better treatment optimized for each indiviual patient. Several monoclonal antibodies directed to influence immune functions are looked at as promising future candidates for MS therapy e. g. Natalizumab (Antegren®). Further potential therapeutic candidates are the statins, widely used to lower serum cholesterol levels, a characteristic hormone of pregnancy, estriol, and (nerve) growth factors as well as neuroprotective agents. In this article, recent results and possible mechanisms of action of these molecules will be discussed.
Literatur
- 1 Sun D, Meyermann R, Wekerle H. Cytotoxic T cells in autoimmune disease of the central nervous system. Ann N Y Acad Sci. 1988; 532 221-229
- 2 Kermode A G, Thompson A J, Tofts P. et al . Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain. 1990; 113 1477-1489
- 3 Katz D, Taubenberger J K, Cannella B. et al . Correlation between magnetic resonance imaging findings and lesion development in chronic, active multiple sclerosis. Ann Neurol. 1993; 34 661-669
- 4 Plumb J, McQuaid S, Mirakhur M, Kirk J. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol. 2002; 12 154-169
- 5 Minagar A, Jy W, Jimenez J J. et al . Elevated plasma endothelial microparticles in multiple sclerosis. Neurology. 2001; 56 1319-1324
- 6 Martino G, Adorini L, Rieckmann P. et al . Inflammation in mulitple sclerosis: the good, the bad, and the complex. Lancet Neurol. 2002; 1 499-509
- 7 Kallmann B A, Hummel V, Lindenlaub T. et al . Cytokine-induced modulation of cellular adhesion to human cerebral endothelial cells is mediated by soluble vascular cell adhesion molecule-1. Brain. 2000; 123 687-697
- 8 Hummel V, Kallmann B A, Wagner S. et al . Production of MMPs in human cerebral endothelial cells and their role in shedding adhesion molecules. J Neuropathol Exp Neurol. 2001; 60 320-327
- 9 Hartung H P, Reiners K, Archelos J J. et al . Circulating adhesion molecules and tumor necrosis factor receptor in multiple sclerosis: correlation with magnetic resonance imaging. Ann Neurol. 1995; 38 186-193
- 10 Rieckmann P, Altenhofen B, Riegel A. et al . Soluble adhesion molecules (sVCAM-1 and sICAM-1) in cerebrospinal fluid and serum correlate with MRI activity in multiple sclerosis. Ann Neurol. 1997; 41 326-333
- 11 Rieckmann P, Altenhofen B, Riegel A. et al . Correlation of soluble adhesion molecules in blood and cerebrospinal fluid with magnetic resonance imaging activity in patients with multiple sclerosis. Mult Scler. 1998; 4 178-182
- 12 Kallmann B A, Rieckmann P. The role of chemokines in MS lesion development. Int MS Journal. 2002; 9 100-107
- 13 Kallmann B A, Wagner S, Hummel V. et al .Characteristic gene expression profile of primary human cerebral endothelial cells. Faseb J 2002; (February 12, 2002): 10.1096/fj.01 - 0594fje
- 14 Mäurer M, Linker R, Hauff P. et al . Imaging of ICAM-1 in experimental autoimmune encephalomyelitis (EAE) with a specific ultrasound contrast agent. J Neurol. 2002; 249, Suppl 1 A199
- 15 Lucchinetti C F, Bruck W, Rodriguez M, Lassmann H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol. 1996; 6 259-274
- 16 Lucchinetti C, Bruck W, Parisi J. et al . Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000; 47 707-717
- 17 Reindl M, Linington C, Brehm U. et al . Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain. 1999; 122 2047-2056
- 18 Egg R, Reindl M, Deisenhammer F. et al . Anti-MOG and anti-MBP antibody subclasses in multiple sclerosis. Mult Scler. 2001; 7 285-289
- 19 Bruck W, Neubert K, Berger T, Weber J R. Clinical, radiological, immunological and pathological findings in inflammatory CNS demyelination-possible markers for an antibody-mediated process. Mult Scler. 2001; 7 173-177
- 20 Berger T, Rubner P, Schautzer F. et al . Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med. 2003; 349 139-145
- 21 Yednock T A, Cannon C, Fritz L C. et al . Prevention of experimental autoimmune encephalomyelitis by antibodies against α-4 β-1 integrin. Nature. 1992; 356 63-66
- 22 Kent S J, Karlik S J, Cannon C. et al . A monoclonal antibody to α-4 integrin suppresses and reverses active experimental allergic encephalomyelitis. J Neuroimmunol. 1995; 58 1-10
- 23 Miller D H, Khan O A, Sheremata W A. et al . A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2003; 348 15-23
- 24 Kobashigawa J A, Katznelson S, Laks H. et al . Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med. 1995; 333 621-627
- 25 Pahan K, Sheikh F G, Namboodiri A M, Singh I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest. 1997; 100 2671-2679
- 26 Wong B, Lumma W C, Smith A M. et al . Statins suppress THP-1 cell migration and secretion of matrix metalloproteinase 9 by inhibiting geranylgeranylation. J Leukoc Biol. 2001; 69 959-962
- 27 Muhlethaler-Mottet A, Otten L A, Steimle V, Mach B. Expression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA. Embo J. 1997; 16 2851-2860
- 28 Youssef S, Stuve O, Patarroyo J C. et al . The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature. 2002; 420 78-84
- 29 Neuhaus O, Strasser-Fuchs S, Fazekas F. et al . Statins as immunomodulators: comparison with interferon-β 1b in MS. Neurology. 2002; 59 990-997
- 30 Greenwood J, Walters C E, Pryce G. et al .Lovastatin inhibits brain endothelial cell Rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. Faseb J 2003 (March 5, 2003): 10.1096/tj.02 - 1014fje
- 31 Thoenen H, Sendtner M. Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat Neurosci. 2002; 5, Suppl 1046-1050
- 32 Linker R A, Maurer M, Gaupp S. et al . CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nat Med. 2002; 8 620-624
- 33 Giess R, Maurer M, Linker R. et al . Association of a null mutation in the CNTF gene with early onset of multiple sclerosis. Arch Neurol. 2002; 59 407-409
- 34 Apfel S C. Is the therapeutic application of neurotrophic factors dead?. Ann Neurol. 2002; 51 8-11
- 35 Kramer R, Zang Y, Gehrmann J. et al . Gene transfer through the blood-nerve barrier: NGF-engineered neuritogenic T lymphocytes attenuate experimental autoimmune neuritis. Nat Med. 1995; 1 1162-1166
- 36 Butzkueven H, Zhang J G, Soilu-Hanninen M. et al . LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival. Nat Med. 2002; 8 613-619
- 37 Miller R G, Bouchard J P, Duquette P. et al . Clinical trials of riluzole in patients with ALS. ALS/Riluzole Study Group-II. Neurology. 1996; 47, Suppl 2 S86-S90
- 38 Webster H D. Growth factors and myelin regeneration in multiple sclerosis. Mult Scler. 1997; 3 113-120
- 39 Cannella B, Pitt D, Capello E, Raine C S. Insulin-like growth factor-1 fails to enhance central nervous system myelin repair during autoimmune demyelination. Am J Pathol. 2000; 157 933-943
- 40 Frank J A, Richert N, Lewis B. et al . A pilot study of recombinant insulin-like growth factor-1 in seven multiple sclerosis patients. Mult Scler. 2002; 8 24-29
- 41 Abramsky O, Lubetzki-Korn I, Evron S, Brenner T. Suppressive effect of pregnancy on MS and EAE. Prog Clin Biol Res. 1984; 146 399-406
- 42 Confavreux C, Hutchinson M, Hours M M. et al . Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N Engl J Med. 1998; 339 285-291
- 43 Kim S, Liva S M, Dalal M A. et al . Estriol ameliorates autoimmune demyelinating disease: implications for multiple sclerosis. Neurology. 1999; 52 1230-1238
- 44 Correale J, Arias M, Gilmore W. Steroid hormone regulation of cytokine secretion by proteolipid protein-specific CD4+ T cell clones isolated from multiple sclerosis patients and normal control subjects. J Immunol. 1998; 161 3365-3374
- 45 Sicotte N L, Liva S M, Klutch R. et al . Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann Neurol. 2002; 52 421-428
- 46 Cannella B, Raine C S. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol. 1995; 37 424-435
- 47 Leppert D, Lindberg R L, Kappos L, Leib S L. Matrix metalloproteinases: multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis. Brain Res Brain Res Rev. 2001; 36 249-257
- 48 Glabinski A R, Ransohoff R M. Sentries at the gate: chemokines and the blood-brain barrier. J Neurovirol. 1999; 5 623-634
Dr. med. Boris-A. Kallmann
Neurologische Universitätsklinik
Josef-Schneider-Straße 11
97080 Würzburg
Email: b.kallmann@mail.uni-wuerzburg.de