 
         
         
         Abstract
         
         Responses of plasma prolactin (PRL) concentration to alterations in carbon dioxide
            pressure (pCO2) induced by 4 min of rebreathing out of a bag with 6 l gas initially containing a
            concentration of 93 % O2 and 7 % CO2 (hypercapnia hyperoxia; HH) and 4 min of voluntary hyperventilation (VH) at a respiratory
            rate of 28 - 32 per minute were investigated in ten males. During rebreathing in HH,
            an augmentation of pCO2 from 40.2 ± 2.1 to 63.7 ± 5.4 mmHg and a decrease of pH from 7.4 ± 0.02 to 7.32 ±
            0.04 were found in capillary blood (p < 0.01). Neither breathing frequency (BF) nor
            plasma PRL changed during this period. After two minutes of post-rebreathing, pCO2 and pH returned to basal values. BF increased from 2 min of rebreathing (12.4 ± 1.9
            breath/min) until 11 min of recovery period (18.1 ± 4.9 breath/min) (p < 0.01), while
            plasma PRL increased from end of rebreathing (11.59 ± 1.49 ng/dl) to 11 min of recovery
            period (13.63 ± 1.97 ng/dl) (p < 0.01). In VH, hyperventilation decreased pCO2 from 39.91 ± 2.62 to 21.73 ± 2.59 mmHg (p < 0.01) and increased pH from 7.39 ± 0.04
            to 7.58 ± 0.04 (p < 0.01) in capillary blood. After four minutes of recovery from
            hyperventilation, pH and pCO2 were back to their basal values. No changes in plasma PRL were found throughout VH.
            This present pilot study’s new finding is that plasma PRL increases after hypercapnia
            acidosis. This indicates that acidosis-induced central chemoreflex function increases
            phrenic nerve activity based on serotonergic modulation, leading to an augmentation
            of BF. As serotonin is also the main PRL-releasing factor, this might have had the
            collateral effect of causing PRL release and delayed appearance in the peripheral
            circulation.
         
         
         
            
Key words
         
         
            Prolactin · Acidosis · Hyperventilation · Serotonin · Chemosensitivity
          
      
    
   
      
         References
         
         
            - 1 
               Vesely D L, San Miguel G I, Hassan I, Schocken D D. 
               Atrial natriuretic hormone, vessel dilator, long acting natriuretic hormone, and kaliuretic
               hormone decrease circulatioing prolactin concentrations. 
               Horm Metab Res. 
               2002; 
               34 
               245-249 
               
- 2 Yen S SC. 
               Prolactin in human reproduction. In: Yen SSC, Jaffe RB (eds) Reproductive endocrinology. Physiology, pathophysiology
               and clinical management. Philadelphia; Saunders 1991: 357-388 
- 3 
               Mallmann E S, Ribeiro M FM, Spritzer P M. 
               Effect of serotonin depletion by p-chlorophenylalanine on serum prolactin levels in
               estrogen-treated ovariectomized rats: insights concerning the serotoninergic, dopaminergic
               and opioid systems. 
               Horm Metab Res. 
               2001; 
               33 
               337-342 
               
- 4 
               Tuomisto J, Manisto P. 
               Neurotransmitter regulation of anterior pituitary hormones. 
               Pharmacol Rev. 
               1985; 
               37 
               249-332 
               
- 5 
               Clemens J A, Roush M E, Fuller R W. 
               Evidence that serotonin neurones stimulate secretion of prolactin releasing factor. 
               Life Sci. 
               1978; 
               22 
               2209-2213  
               
- 6 
               Strüder H K, Weicker H. 
               Physiology and pathophysiology of the serotonergic system and its implications on
               mental and physical performance. Part. I. 
               Int J Sport Med. 
               2001; 
               22 
               467-481  
               
- 7 
               Bonham A C. 
               Neurotransmitter in the CNS control of breathing. 
               Resp Physiol. 
               1995; 
               101 
               219-230  
               
- 8 
               Wang W, Pizzonia J H, Richerson G B. 
               Chemosensivity of rat medullary raphe neurones in primary tissue culture. 
               J Physiol (Lond). 
               1998; 
               551 
               433-450  
               
- 9 
               Wang W, Tiwari J K, Bradley S R, Zaykin A V, Richerson G B. 
               Acidosis-stimulated neurones of the medullary raphe are serotonergic. 
               J Neurophysiol. 
               2001; 
               85 
               2224-2235  
               
- 10 
               Read D JC. 
               A clinical method for assesing the ventilatory response to carbon dioxide. 
               Aust Ann Med. 
               1967; 
               16 
               20-32  
               
- 11 
               Ursino M, Magosso E, Avanzolini G. 
               An integrated model of the human ventilatory control system: the response to hypercapnia. 
               Clin Physiol. 
               2001; 
               21 
               447-464  
               
- 12 
               Pilowsky P M, De Castro D, Llewellyn-Smith I, Lipski J, Voss M D. 
               Serotonin immunoreactive boutons make synapses with feline motoneurones. 
               J Neurosci. 
               1990; 
               10 
               1091-1098  
               
- 13 
               Holtman J R Jr.. 
               Immunohistochemical localization of serotonin- and substance P-containing fibers around
               respiratory muscle motoneurones in the nucleus ambiguous of the cat. 
               Neurosci. 
               1988; 
               26 
               169-178  
               
- 14 
               Voss M D, De Castro D, Lipski J, Pilowsky P M, Jiang C. 
               Serotonin immunoreactive boutons form close appositions with respiratory neurones
               of the dorsal respiratory group in the cat. 
               J Comparative Neurology. 
               1990; 
               295 
               208-218  
               
- 15 
               Bainton C R, Kirkwood P A. 
               The effect of carbon dioxide on the tonic and the rhythmic discharges of expiratory
               bulbospinal neurones. 
               J Physiol. 
               1979; 
               296 
               291-314  
               
- 16 
               Mueller R A, Towle A C, Breese G R. 
               Supersensitivity to the respiratory stimulatory effect of TRH in 5,7-dihydroxytryptamine-treated
               rats. 
               Brain Research. 
               1984; 
               298 
               370-373  
               
- 17 
               Veasey S C, Fornal C A, Metzler C W, Jacobs B L. 
               Single-unit responses of serotonergic dorsal raphe neurones to specific motor challenges
               in freely moving cats. 
               Neurosicences. 
               1997; 
               79 
               161-169  
               
- 18 
               Freeman M E, Kanyicska B, Lerant A, Nagy G. 
               Prolactin: Structure, function and regulation of secretion. 
               Physiol Rev. 
               2000; 
               80 
               1523-1631  
               
- 19 
               Ahmad H R, Loeschcke H H. 
               Fast bicarbonate-chloride exchange between brain cells and brain extracellular fluid
               in respiratory acidosis. 
               Pflügers Arch. 
               1982; 
               395 
               293-299  
               
- 20 
               Maren T H. 
               Effect of varying CO2 equilibria on rates of HCO3 formation in cerebrospinal fluid. 
               J Appl Physiol. 
               1979; 
               47 
               471-477  
               
- 21 Nicoll C S. 
               Physiological actions of prolactin. In: Knobil E, Sawyer NH (eds) Endocrinology. Handbook of physiology. Am. Physiol.
               Soc 1974 sect. 7, vol. 1, pt. II: 253 
- 22 
               Foskett J K, Bern H A, Machen T E, Conner M. 
               Chloride cells and the hormonal control of teleost fish osmoregulation. 
               J Exp Biol. 
               1983; 
               106 
               255 
               
- 23 
               Robertson M, Boyajian M, Patterson K, Robertson W. 
               Modulation of the chloride concentration of human sweat by prolactin. 
               Endocrinology. 
               1986; 
               119 
               2439-2444  
               
- 24 
               Thompsom S A. 
               Localization of immunoreactive prolactin in ependyma and circumventricular organs
               of rat brain. 
               Cell Tissue Res. 
               1982; 
               225 
               79-93  
               
- 25 
               Lai Z, Roos P, Olsson Y, Larsson C, Nyberg F. 
               Characterization of prolactin receptors in human choroid plexus. 
               Neuroendocrinology. 
               1992; 
               56 
               225-233 
               
- 26 
               Mangurian L P, Jurjus A R, Walsh R J. 
               Prolactin receptor localization to the area postrema. 
               Brain Res. 
               1999; 
               836 
               218-220  
               
- 27 
               Douglas R M, Trouth C O, James S D, Sexcius L M, Kc P, Dehkordi O, Valladares E R,
               Mckenzie C. 
               Decreased CSF pH at ventral brain stem induced widespread c-Fos immunoreactivity in
               rat brain neurones. 
               J App Physiol. 
               2001; 
               90 
               475-485  
               
- 28 
               Smith Q R, Johanson C E. 
               Active transport of chloride by lateral ventricle choroid plexus of the rat. 
               Am J Physiol. 
               1985; 
               249 
               F470-F477  
               
- 29 
               Strüder H K, Hollmann W, Weicker H, Schiffer T, Weber K. 
               Blood oxygen pressure affects plasma prolactin concentration in humans. 
               Acta Physiol Scand. 
               1999; 
               165 
               265-271 
               
S. Rojas Vega, M. D., Ph. D.
            Fachbereich I, Angewandte Bewegungswissenschaft, Institut für Individualsport
            
            Deutsche Sporthochschule Köln · Carl-Diem-Weg 6 · 50933 Cologne · Germany
            
            Telefon: + 49 (221) 498 24 20
            
            Fax: + 49 (221) 497 34 54
            
            eMail: rojas@dshs-koeln.de