Exp Clin Endocrinol Diabetes 2003; 111(8): 499-504
DOI: 10.1055/s-2003-44710
Article

J. A. Barth Verlag in Georg Thieme Verlag Stuttgart · New York

Effect of α-Ketobutyrate on Microvascular Thickness in the Diabetic Rat Kidney

R. Hirota 1 , Y. Kusumi 2 , H. Takahashi 1 , S. Nakagawa 1
  • 1Department of Biochemistry, Nihon University School of Medicine, Tokyo, Japan
  • 2Department of Pathology, Nihon University School of Medicine, Tokyo, Japan
Weitere Informationen

Publikationsverlauf

Received: September 4, 2002 First decision: November 24, 2002

Accepted: April 22, 2003

Publikationsdatum:
09. Januar 2004 (online)

Abstract

The first objective of this study was to examine the intermediary metabolism of plasma amino acids and keto acids in streptozotocin (STZ)-treated rats. Plasma α-aminobutyrate (α-ABA) concentration in STZ rats was 1.5-fold greater than in control (CNT) animals at 1 month. In contrast, the level of plasma α-ketobutyrate (KB), which is transaminated to α-ABA, did not differ significantly between STZ and CNTs at 1 month, and also increased with age. Additionally, HPLC analysis revealed consistent profiles containing peaks of unknown origin. Two pathways exist for the formation of α-KB, either from the action of threonine dehydratase or via homocysteine, the latter metabolite being closely associated with the development of cardiovascular disease. These observations suggest that uncharacterized metabolites, including plasma α-KB, may be potential risk factors for the development of diabetic complications. We carried out preparatory experiments on non-diabetic rats to investigate the influence of α-KB and confirmed this metabolite had no adverse effects. The second aim of the study was to compare vascular wall thickness in diabetic rats treated or untreated with α-KB with CNT animals in order to determine the effects of α-KB on the renal microvasculature. The thickness of the medial wall of arterioles and small arteries differed significantly among all groups and was increased, especially in the small arterial walls of the diabetic rats treated with α-KB. Plasma renin activities (PRA) in both diabetic rats treated or untreated with α-KB were decreased significantly compared to CNT animals, while diabetic rats treated with α-KB had higher angiotensin converting enzyme (ACE) activity than the CNT group (p < 0.01). These results suggest that α-KB may have a role in the renal microvascular complications of diabetes.

References

  • 1 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal Biochem. 1976;  72 248-254
  • 2 Elfarra A A, Lash L H, Anders M W. Metabolic activation and detoxication of nephrotoxic cysteine and homocysteine S-conjugates.  Proc Natl Acad Sci USA. 1986;  83 2667-2671
  • 3 Everett A D, Scott J, Wilfong N, Marino B, Rosenkranz R P, Inagami T, Gomez R A. Renin and angiotensinogen expression during the evolution of diabetes.  Hypertension. 1992;  19 70-78
  • 4 Felig P, Marliss E, Ohman J L, Cahill Jr C F. Plasma amino acid levels in diabetic ketoacidosis.  Diabetes. 1970;  19 727-728
  • 5 Higaki J, Ogihara T, Imai N, Kumahara Y, Hontani S, Nishiura M, Ogawa H, Hirose S, Murakami K. A new sensitive direct radioimmunoassay for human plasma renin and its clinical application.  J Lab Clin Med. 1984;  104 947-954
  • 6 Hirota R, Nishida S, Takahashi H, Nakagawa S. The influences of insulin and food intake on intestinal ornithine transcarbamylase activity in diabetic rats.  Exp Clin Endocrinol Diabetes. 1998;  106 117-122
  • 7 Jacobs R L, House J D, Brosnan M E, Brosnan J T. Effects of streptozotocin-induced diabetes and of insulin treatment on homocysteine metabolism in the rat.  Diabetes. 1998;  47 1967-1970
  • 8 Kasahara Y, Ashihara Y. Colorimetry of angiotensin-I converting enzyme activity in serum.  Clin Chem. 1981;  27 1922-1925
  • 9 Maeda S, Kikkawa R, Haneda M, Togawa M, Koya D, Horide N, Kajiwara N, Uzu T, Shigeta Y. Reduced activity of renal angiotensin-converting enzyme in streptozotocin-induced diabetic rats.  J Diabet Complications. 1981;  5 225-229
  • 10 Nakayama T, Izumi Y, Soma M, Kanmatsuse K. Adrenal renin-angiotensin-aldosterone system in streptozotocin-diabetic rats.  Horm Metab Res. 1998;  30 12-15
  • 11 Qureshi G A. High-performance liquid chromatographic methods with fluorescence detection for the determination of branched-chain amino acids and their alpha-keto analogues in plasma samples of healthy subjects and uraemic patients.  J Chromatogr. 1987;  400 91-99
  • 12 Reddi A S, Nimmagadda V R, Arora R. Effect of antihypertensive therapy on renal artery structure in type 2 diabetic rats with hypertension.  Hypertension. 2001;  37 1273-1278
  • 13 Singh B K, Szamosi I, Shaner D. A high-performance liquid chromatography assay for threonine/serine dehydratase.  Anal Biochem. 1993;  208 260-263
  • 14 Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review.  Diabetologia. 2001;  44 129-146
  • 15 Steele R D. Transaminative metabolism of alpha-amino-n-butyrate in rats.  Metabolism. 1982;  31 318-325
  • 16 Trevisan A, Meneghetti P, Maso S, Troso O. In-vitro mechanisms of 1, 2-dichloropropane nephrotoxicity using the renal cortical slice model.  Hum Exp Toxicol. 1993;  12 117-121
  • 17 Yang W, Roth K S. Defect in alpha-ketobutyrate metabolism: a new inborn error.  Clin Chim Acta. 1985;  145 173-182
  • 18 Yeung Y G, Yeung D. Comparative studies on threonine and serine dehydratases in rat liver.  Int J Biochem. 1980;  11 161-164
  • 19 Zoubi S A, Mayhew T M, Sparrow R A. The small intestine in experimental diabetes: cellular adaptation in crypts and villi at different longitudinal sites.  Virchows Arch. 1995;  426 501-507

Rei Hirota PhD.

Department of Biochemistry
Nihon University School of Medicine

Itabashi

Tokyo

173-8610, Japan

Telefon: + 81339728111, ex. -2243

Fax: + 81 3 39 72 00 27

eMail: rhirota@med.nihon-u.ac.jp