Plant Biol (Stuttg) 2003; 5(6): 651-660
DOI: 10.1055/s-2003-44713
Original Paper

Georg Thieme Verlag Stuttgart · New York

A Top-Down Hierarchy in Fruit Set on Inflorescences in Iris fulva (Iridaceae)

R. A. Wesselingh 1 , 2 , M. L. Arnold 1
  • 1Department of Genetics, University of Georgia, Athens, Georgia, USA
  • 2Biodiversity Research Centre, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Further Information

Publication History

Publication Date:
02 February 2004 (online)

Abstract

In Iris fulva, the apical flower on an inflorescence opens first, and the flowering sequence then proceeds from the most basal flower upward to the apex (acropetally). Flowering order and flower position are thus partially decoupled, and this provides an opportunity to separately investigate the effects of these two factors upon fruit formation. We recorded natural patterns of fruit set and seed production, and found that fruit set patterns were determined by what appears to be a form of apical dominance. The first, apical flower had the highest fruit set and seed production. Fruit set decreased towards the base of the inflorescence, with later-opening flowers having a higher fruit set. This is contrary to the pattern usually observed in other acropetally flowering plants, which is a higher fruit set for basal, early flowers. By performing additional hand pollinations and counting pollen grains on naturally pollinated flowers, we found that pollen deposition was not a major factor limiting fruit set, and that it could not explain the large difference in fruit set between the apical and basal flowers. Removing the first flower after it had wilted increased fruit set in the remaining flowers, but mainly in the more apical flowers. Only by removing the two topmost flowers could we obtain an increase in fruit set for the basal flower. The fact that the basal flower rarely sets fruit, despite being closer to resources, suggests that the apical meristem is either a strong sink for resources or produces hormones that form a gradient along the inflorescence, which is comparable with apical dominance.

References

  • 1 Arista M., Ortiz P. L., Talavera S.. Apical pattern of fruit production in the racemes of Ceratonia siliqua (Leguminosae: Caesalpinioideae): Role of pollinators.  American Journal of Botany. (1999);  86 1708-1716
  • 2 Ashman T. L., Hitchens M. S.. Dissecting the causes of variation in intra-inflorescence allocation in a sexually polymorphic species, Fragaria virginiana (Rosaceae).  American Journal of Botany. (2000);  87 197-204
  • 3 Back A. J., Kron P., Stewart S. C.. Phenological regulation of opportunities for within-inflorescence geitonogamy in the clonal species, Iris versicolor (Iridaceae).  American Journal of Botany. (1996);  83 1033-1040
  • 4 Bangerth F.. Dominance among fruit/sinks and the search for a correlative signal.  Physiologia Plantarum. (1989);  76 608-614
  • 5 Beattie A. J.. A technique for the study of insect-borne pollen.  Pan-Pacific Entomologist. (1972);  47 82
  • 6 Brunet J.. Male reproductive success and variation in fruit and seed set in Aquilegia caerulea (Ranunculaceae).  Ecology. (1996);  77 2458-2471
  • 7 Burd M.. Bateman's principle and plant reproduction: the role of pollen limitation in fruit and seed set.  Botanical Review. (1994);  60 83-111
  • 8 Burke J. M., Bulger M. R., Wesselingh R. A., Arnold M. L.. Frequency and spatial patterning of clonal reproduction in Louisiana iris hybrid populations.  Evolution. (2000);  54 137-144
  • 9 Burke J. M., Carney S. E., Arnold M. L.. Hybrid fitness in the Louisiana irises: analysis of parental and F1 performance.  Evolution. (1998);  52 37-43
  • 10 Carney S. E., Hodges S. A., Arnold M. L.. Effects of differential pollen-tube growth on hybridization in the Louisiana irises.  Evolution. (1996);  50 1871-1878
  • 11 Cline M. G.. The role of hormones in apical dominance. New approaches to an old problem in plant development.  Physiologia Plantarum. (1994);  90 230-237
  • 12 Cruzan M. B., Hamrick J. L., Arnold M. L., Bennett B. D.. Mating system variation in hybridizing irises: Effects of phenology and floral densities on family outcrossing rates.  Heredity. (1994);  72 95-105
  • 13 Diggle P. K.. Architectural effects and the interpretation of patterns of fruit and seed development.  Annual Review of Ecology and Systematics. (1995);  26 531-552
  • 14 Emms S. K.. Temporal patterns of seed set and decelerating fitness returns on female allocation in Zigadenus paniculatus (Liliaceae), an andromonoecious lily.  American Journal of Botany. (1996);  83 304-315
  • 15 Espadaler X., Gómez C.. Female performance in Euphorbia characias: effect of flower position on seed quantity and quality.  Seed Science Research. (2001);  11 163-172
  • 16 Fægri K., van der Pijl L.. The Principles of Pollination Ecology. Oxford, UK; Pergamon Press (1979)
  • 17 Goldblatt P.. Iridaceae. Kubitzki, K., ed. Flowering Plants. Monocotyledons: Lilianae (Except Orchidaceae) , The Families and Genera of Flowering Plants, Vol. III. Berlin; Springer (1998): 295-333
  • 18 Goldingay R. L., Whelan R. J.. The influence of pollinators on fruit positioning in the Australian shrub Telopea speciosissima (Proteaceae).  Oikos. (1993);  68 501-509
  • 19 Irwin R. E.. Morphological variation and female reproductive success in two sympatric Trillium species: evidence for phenotypic selection in Trillium erectum and Trillium grandiflorum (Liliaceae).  American Journal of Botany. (2000);  87 205-214
  • 20 Ishii H. S., Sakai S.. Implications of geitonogamous pollination for floral longevity in Iris gracilipes. .  Functional Ecology. (2001 a);  15 633-641
  • 21 Ishii H. S., Sakai S.. Effects of display size and position on individual floral longevity in racemes of Narthecium asiaticum (Liliaceae).  Functional Ecology. (2001 b);  15 396-405
  • 22 Klinkhamer P. G. L., de Jong T. J.. Plant size and seed production in the monocarpic perennial Cynoglossum officinale L.  New Phytologist. (1987);  106 773-783
  • 23 Kron P., Stewart S. C., Back A.. Self-compatibility, autonomous self-pollination, and insect-mediated pollination in the clonal species Iris versicolor. .  Canadian Journal of Botany. (1993);  71 1503-1509
  • 24 Ladd P. G., Connell S. W.. Andromonoecy and fruit set in three genera of the Proteaceae.  Botanical Journal of the Linnean Society. (1994);  116 77-88
  • 25 Lubbers A. E., Lechowitz M. J.. Effects of leaf removal on reproduction vs. belowground storage in Trillium grandiflorum. .  Ecology. (1989);  70 85-96
  • 26 Mathew B.. The Iris. Portland, Oregon, USA; Timber Press (1989)
  • 27 Medrano M., Guitián P., Guitián J.. Patterns of fruit and seed set within inflorescences of Pancratium maritimum (Amaryllidaceae): nonuniform pollination, resource limitation, or architectural effects?.  American Journal of Botany. (2000);  87 493-501
  • 28 Niesenbaum R. A.. Linking herbivory and pollination: defoliation and selective fruit abortion in Lindera benzoin. .  Ecology. (1996);  77 2324-2331
  • 29 Nishikawa Y.. The function of multiple flowers of a spring ephemeral, Gagea lutea (Liliaceae), with reference to blooming order.  Canadian Journal of Botany. (1998);  76 1404-1411
  • 30 Ruiz Zapata T., Arroyo M. T. K.. Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela.  Biotropica. (1978);  10 221-230
  • 31 Siegel S., Castellan  Jr. N. J.. Nonparametric Statistics for the Behavioral Sciences. New York; McGraw-Hill (1988)
  • 32 Stephenson A. G.. Flower and fruit abortion: proximate causes and ultimate functions.  Annual Review of Ecology and Systematics. (1981);  12 253-279
  • 33 Steyermark J. A.. Flora of Missouri. Ames, Iowa, USA; Iowa State University Press (1963)
  • 34 Susko D. J., Lovett-Doust L.. Variable patterns of seed maturation and abortion in Alliaria petiolata (Brassicaceae).  Canadian Journal of Botany. (1998);  76 1677-1686
  • 35 Vallius E.. Position-dependent reproductive success of flowers in Dactylorhiza maculata (Orchidaceae).  Functional Ecology. (2000);  14 573-579
  • 36 Vaughton G.. Nonrandom patterns of fruit set in Banksia spinulosa (Proteaceae): interovary competition within and among inflorescences.  International Journal of Plant Sciences. (1993);  154 306-313
  • 37 Viosca Jr P.. The irises of southeastern Louisiana: a taxonomic and ecological interpretation.  Bulletin of the American Iris Society. (1935);  57 3-56
  • 38 Wesselingh R. A., Arnold M. L.. Pollinator behaviour and the evolution of Louisiana iris hybrid zones.  Journal of Evolutionary Biology. (2000 a);  13 171-180
  • 39 Wesselingh R. A., Arnold M. L.. Nectar production in Louisiana iris hybrids.  International Journal of Plant Sciences. (2000 b);  161 245-251

R. A. Wesselingh

Biodiversity Research Centre
Unité d'Écologie et de Biogéographie
Université Catholique de Louvain

Croix du Sud 4 - 5

1348 Louvain-la-Neuve

Belgium

Email: wesselingh@ecol.ucl.ac.be

Section Editor: L. A. C. J. Voesenek

    >