Plant Biol (Stuttg) 2004; 6(2): 165-170
DOI: 10.1055/s-2003-44719
Original Paper

Georg Thieme Verlag Stuttgart · New York

Positive and Negative Tropic Curvature Induced by Microbeam Irradiation of Protonemal Tip Cells of the Moss Ceratodon purpureus

T. Lamparter1 , T. Kagawa2 , G. Brücker1 , M. Wada2 , 3
  • 1Institut für Biologie, Pflanzenphysiologie, Freie Universität Berlin, Berlin, Germany
  • 2National Institute of Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
  • 3Department of Biology, Tokyo Metropolitan University, Minami-Ohsawa, 1-1, Hachioji-shi, Tokyo 192-0397, Japan
Further Information

Publication History

Publication Date:
26 March 2004 (online)

Abstract

The photoreceptor phytochrome mediates tropic responses in protonemata of the moss Ceratodon purpureus. Under standard conditions the tip cells grow towards unilateral red light, or perpendicular to the electrical vector of polarized light. In this study the response of tip cells to partial irradiation of the apical region was analysed using a microbeam apparatus. The fluence response curve gave an unexpected pattern: whereas a 15-min microbeam with light intensities around 3 µmol m-2 s-1 induced a growth curvature towards the irradiated side, higher light intensities around 100 µmol m-2 s-1 caused a negative response, the cells grew away from the irradiated side. This avoidance response is explained by two effects: the light intensity is high enough to induce photoconversion into the active Pfr form of phytochrome, not only on the irradiated but also on the non-irradiated side by stray light. At the same time, the strong light on the irradiated side acts antagonistically to Pfr. As a result of this inhibition, the growth direction is moved to the light-avoiding side. Such a Pfr-independent mechanism might be important for the phototropic response to distinguish between the light-directed and light-avoiding side under unilateral light.

References

  • 1 Briggs W. R., Christie J. M.. Phototropins 1 and 2: versatile plant blue-light receptors.  Trends Plant Sci.. (2002);  7 204-210
  • 2 Brücker G., Zeidler M., Kohchi T., Hartmann E., Lamparter T.. Microinjection of heme oxygenase genes rescues phytochrome-chromophore-deficient mutants of the moss Ceratodon purpureus. .  Planta. (2000);  210 529-535
  • 3 Butler W. L., Hendricks S. B., Siegelman H. W.. Action spectra of phytochrome in vitro. .  Photochem. Photobiol.. (1964);  3 521-528
  • 4 Cove D. J., Quatrano R. S., Hartmann E.. The alignment of the axis of asymmetry in regenerating protoplasts of the moss, Ceratodon purpureus, is determined independently of axis polarity.  Development. (1996);  122 371-379
  • 5 Esch H., Hartmann E., Cove D., Wada M., Lamparter T.. Phytochrome-controlled phototropism of protonemata of the moss Ceratodon purpureus: physiology of wild type and class 2 ptr mutants.  Planta. (1999);  209 290-298
  • 6 Hartmann E., Klingenberg B., Bauer L.. Phytochrome mediated phototropism in protonemata of the moss Ceratodon purpureus BRID.  Photochem. Photobiol.. (1983);  38 599-603
  • 7 Hartmann E., Weber M.. Storage of the phytochrome-mediated phototropic stimulus of moss protonematal cells.  Planta. (1988);  175 39-49
  • 8 Iino M., Shitanishi K., Kadota A., Wada M.. Phytochrome mediated phototropism in Adiantum protonemata - I. Phototropism as a function of the lateral Pfr gradient.  Photochem. Photobiol.. (1990);  51 469-476
  • 9 Kagawa T., Kadota A., Wada M.. Phytochrome mediated photoorientation of chloroplasts in protonemal cells of the fern Adiantum can be induced by brief irradiation with red light.  Plant Cell Physiol.. (1994);  35 371-377
  • 10 Kendrick R. E., Kronenberg G. H. M.. Photomorphogenesis in Plants, 2nd edition. Dordrecht; Kluwer Academic Publishers (1994)
  • 11 Kern V. D., Sack F. D.. Irradiance-dependent regulation of gravitropism by red light in protonemata.  Planta. (1999);  1999 299-307
  • 12 Kraml M.. Light direction and polarisation. Kendrick, R. E. and Kronenberg, G. H. M., eds. Photomorphogenesis in Plants. Dordrecht; Kluwer Academic Publishers (1994): 417-446
  • 13 Lamparter T., Podlowski S., Mittmann F., Schneider-Poetsch H., Hartmann E., Hughes J.. Phytochrome from protonemal tissue of the moss Ceratodon purpureus. .  J. Plant Physiol.. (1995);  147 426-434
  • 14 Mancinelli A.. The physiology of phytochrome action. Kendrick, R. E. and Kronenberg, G. H. M., eds. Photomorphogenesis in Plants, 2nd edition. Dordrecht; Kluwer Academic Publishers (1994): 211-269
  • 15 Smith H.. Phytochromes and light signal perception by plants - an emerging synthesis.  Nature. (2000);  407 585-591
  • 16 Wada M., Sugai M.. Photobiology of ferns. Kendrick, R. E. and Kronenberg, G. H. M., eds. Photomorphogenesis in Plants. Dordrecht; Kluwer Academic Publishers (1994): 783-803
  • 17 Zeidler M., Lamparter T., Hughes J., Hartmann E., Remberg A., Braslavsky S., Schaffner K., Gärtner W.. Recombinant phytochrome of the moss Ceratodon purpureus: heterologous expression and kinetic analysis of Pr → Pfr conversion.  Photochem. Photobiol.. (1998);  68 857-863

T. Lamparter

Institut für Biologie, Pflanzenphysiologie
Freie Universität Berlin

Königin-Luise-Straße 12 - 16

14195 Berlin

Germany

Email: lamparte@zedat.fu-berlin.de

Section Editor: G. Thiel