Subscribe to RSS
DOI: 10.1055/s-2003-44779
Georg Thieme Verlag Stuttgart · New York
Ageing in Plants: Conserved Strategies and Novel Pathways
Publication History
Publication Date:
27 November 2003 (online)
Abstract
Ageing increases chaos and entropy and ultimately leads to the death of living organisms. Nevertheless, single gene mutations substantially alter lifespan, revealing that ageing is subject to genetic control. In higher plants, ageing is most obviously manifested by the senescence of leaves, and recent molecular genetic studies, in particular the isolation of Arabidopsis mutants with altered leaf senescence, have greatly advanced our understanding of ageing regulation in plants. This paper provides an overview of the identified genes and their respective molecular pathways. Hormones, metabolic flux, reactive oxygen species and protein degradation are prominent strategies employed by plants to control leaf senescence. Plants predominantly use similar ageing-regulating strategies as yeast and animals but have evolved different molecular pathways. The senescence window concept is proposed to describe the age-dependent actions of the regulatory genes. It is concluded that the similarities and differences in ageing between plants and other organisms are deeply rooted in the evolution of ageing and we hope to stimulate discussion and research in the fascinating field of leaf senescence.
Key words
Ageing - leaf senescence - Arabidopsis - hormones - metabolic flux - reactive oxygen species - protein degradation.
References
- 1 Adachi H., Fujiwara Y., Ishii N.. Effects of oxygen on protein carbonyl and aging in Caenorhabditis elegans mutants with long (age-1) and short (mev-1) life spans. J. Gerontology. (1998); 53 A B240-B244
- 2 Bartke A., Brown-Borg H. M., Bode A. M., Carlson J., Hunter W. S., Bronson R. T.. Does growth hormone prevent or accelerate aging?. Experimental Gerontology. (1998); 33 675-687
- 3 Berger S.. Jasmonate-related mutants of Arabidopsis as tools for studying stress signaling. Planta. (2002); 214 497-504
- 4 Biesalski H. K.. Free radical theory of aging. Curr. Opin. Clinic Nutri. Metabolic Care. (2002); 5 5-10
- 5 Bleecker A. B.. The evolutionary basis of leaf senescence: method to the madness?. Curr. Opin. Plant Biol.. (1998); 1 73-78
- 6 Bleecker A. B., Estelle M. A., Somerville C., Kende H.. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. . Science. (1988); 241 1086-1089
- 7 Bleecker A. B., Patterson S. E.. Last exit: senescence, abscission, and meristem arrest in Arabidopsis. . Plant Cell. (1997); 9 1169-1179
- 8 Bowling S. A., Clarke J. D., Liu Y., Klessig D. F., Dong X.. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell. (1997); 9 1573-1584
- 9 Buchanan-Wollaston V.. The molecular biology of leaf senescence. J. Exp. Bot.. (1997); 48 181-199
- 10 Bundock P., van Attikum H., Hooykaas P.. Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant. Nucleic Acids Res.. (2002); 30 3395-3400
- 11 Chang K. T., Min K.-T.. Regulation of lifespan by histone deacetylase. Ageing Res. Rev.. (2002); 1 313-326
- 12 Chao Q., Rothenberg M., Solano R., Roman G., Terzaghi W., Ecker J. R.. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. (1997); 89 1133-1144
- 13 Clancy D. J., Gems D., Hafen E., Leevers S. J., Partridge L.. Dietary restriction in long-lived dwarf flies. Science. (2002); 296 319
- 14 Clouse S. D., Sasse J. M.. Brassinosteroids: essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol.. (1998); 49 327-451
- 15 Costa R. M. A., Morgante P. G., Berra C. M., Nakabashi M., Bruneau D., Bouchez D., Sweder K. S., Van Sluys M.-A., Menck C. F.. The participation of AtXPB1, the XPB/RAD25 homologue gene from Arabidopsis thaliana in DNA repair and plant development. Plant J.. (2001); 28 385-395
- 16 Creelman R. A., Mullet J. E.. Biosynthesis and action of jasmonates in plants. Annu Rev. Plant Physiol. Plant Mol. Biol.. (1997); 48 335-381
- 17 Creissen G., Firmin J., Fryer M., Kular B., Leyland N., Reynolds H., Pastori G., Wellburn F., Baker N., Wellburn A., Mullineaux P.. Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell. (1999); 11 1277-1292
- 18 Dai N., Schaffer A., Petreikov M., Shahak Y., Giller Y., Ratner K., Levine A., Granot D.. Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell. (1999); 11 1253-1266
- 19 de Boer J., Andressoo J. O., de Wit J., Huijmans J., Beems R. B., van Steeg H., Weeda G., van der Horst G. T. J., van Leeuwen W., Themmen A. P. N., Meradji M., Hoeijmakers J. H. J.. Premature aging in mice deficient in DNA repair and transcription. Science. (2002); 296 1276-1279
- 20 Delledonne M., Zeier J., Marocco A., Lamb C.. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. USA. (2001); 98 13454-13459
- 21 Dijkwel P. P., Huijser C., Weisbeek P. J., Chua N. H., Smeekens S. C. M.. Sucrose control of phytochrome A signaling in Arabidopsis. . Plant Cell. (1997); 9 583-595
- 22 Dillin A., Crawford D. K., Kenyon C.. Timing requirements for insulin/IGF-1 signaling in C. elegans. . Science. (2002); 298 830-834
- 23 Doelling J. H., Walker J. M., Friedman E. M., Thompson A. R., Vierstra R. D.. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. . J. Biol. Chem.. (2002); 277 33105-33114
- 24 Donehower L. A.. Does p53 affect organismal aging?. J. Cellular Physiol.. (2002); 192 23-33
- 25 Fan L., Zheng S., Wang X.. Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell. (1997); 9 2183-2196
- 26 Fedoroff N. V.. Cross-talk in abscisic acid signaling. Sci. STKE. (2002); 140
- 27 Finch C. E., Ruvkun G.. The genetics of aging. Annu. Rev. Genomics Human Genet.. (2001); 2 435-462
- 28 Finkel T., Holbrook N. J.. Oxidants, oxidative stress and the biology of ageing. Nature. (2000); 408 239-247
- 29 Frugis G., Chua N.-H.. Ubiquitin-mediated proteolysis in plant hormone signal transduction. Trends Cell Biol.. (2002); 12 308-311
- 30 Fujiki Y., Yoshikawa Y., Sato T., Inada N., Ito M., Nishida I., Watanabe A.. Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiologia Plantarum. (2001); 111 345-352
- 31 Gallego M. E., White C. I.. RAD50 function is essential for telomere maintenance in Arabidopsis. . Proc. Natl. Acad. Sci. USA. (2001); 98 1711-1716
- 32 Gan S., Amasino R. M.. Inhibition of leaf senescence by autoregulated production of cytokinin. Science. (1995); 270 1986-1988
- 33 Gan S., Amasino R. M.. Molecular genetic regulation and manipulation of leaf senescence. Plant Physiol.. (1997); 113 313-319
- 34 Gems D.. An integrated theory of ageing in the nematode Caenorhabditis elegens. . J. Anat.. (2000); 197 521-528
- 35 Godiard L., Sauviac L., Dalbin N., Liaubet L., Callard D., Czernic P., Marco Y.. CYP76C2, an Arabidopsis thaliana cytochrome P450 gene expressed during hypersensitive and developmental cell death. FEBS Letters. (1998); 438 245-249
- 36 Grbic V., Bleecker A. B.. Ethylene regulates the timing of leaf senescence in Arabidopsis. . Plant J.. (1995); 8 595-602
- 37 Grune T., Reinheckel T., Davies K. J.. Degradation of oxidized proteins in mammalian cells. FASEB J.. (1997); 11 526-534
- 38 Guarente L., Kenyon C.. Genetic pathways that regulate ageing in model organisms. Nature. (2000); 408 255-262
- 39 Haber J. E.. Recombination: a frank view of exchanges and vice versa. Curr. Opin. Cell Biol.. (2000); 12 286-292
- 40 Hanaoka H., Noda T., Shirano Y., Kato T., Hayashi H., Shibata D., Tabata S., Ohsumi Y.. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol.. (2002); 129 1181-1193
- 41 Hartung F., Plchova H., Puchta H.. Molecular characterisation of RecQ homologues in Arabidopsis thaliana. . Nucleic Acids Res.. (2000); 28 4275-4282
- 42 Hauck S. J., Bartke A.. Effects of growth hormone on hypothalamic catalase and Cu/Zn superoxide dismutase. Free Radical Biol. Medicine. (2000); 28 970-978
- 43 He Y., Fukushige H., Hildebrand D. F., Gan S.. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol.. (2002); 128 876-884
- 44 He Y., Gan S.. Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in Arabidopsis. . Plant Mol. Biol.. (2001); 47 595-605
- 45 He Y., Gan S.. A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. . Plant Cell. (2002); 14 805-815
- 46 He Y., Tang W., Swain J. D., Green A. L., Jack T. P., Gan S.. Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol.. (2001); 126 707-716
- 47 Hensel L. L., Grbic V., Baumgarten D. A., Bleecker A. B.. Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. . Plant Cell. (1993); 5 553-564
- 48 Himelblau E., Mira H., Lin S. J., Culotta V. C., Penarrubia L., Amasino R. M.. Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. . Plant Physiol.. (1998); 117 1227-1234
- 49 Hodges M. D., Forney C. F.. The effect of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. J. Exp. Bot.. (2000); 51 645-655
- 50 Hughes K. A., Alipaz J. A., Drnevich J. M., Reynolds R. M.. A test of evolutionary theories of aging. Proc. Natl. Acad. Sci. USA. (2002); 99 14286-14291
- 51 Hutchison C. E., Kieber J. J.. Cytokinin signalling in Arabidopsis. . Plant Cell Suppl.. (2002); S47-S59
- 52 Hwang I., Chen H. C., Sheen J.. Two-component signal transduction pathways in Arabidopsis. Plant Physiol.. (2002); 129 500-515
- 53 Hwang I., Sheen J.. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature. (2001); 413 383-389
- 54 Jang J.-C., Leon P., Zhou L., Sheen J.. Hexokinase as a sugar sensor in higher plants. Plant Cell. (1997); 9 5-19
- 55 Jimenez A., Hernandez J. A., Pastori G., del Rio L. A., Sevilla F.. Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol.. (1998); 118 1327-1335
- 56 Jing H. C., Sturre M. J. G., Hille J., Dijkwel P. P.. Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. Plant J.. (2002); 32 51-64
- 57 John C. F., Morris K., Jordan B. R., Thomas B., Mackerness S.. Ultraviolet-B exposure leads to up-regulation of senescence-associated genes in Arabidopsis thaliana. . J. Exp. Bot.. (2001); 52 1367-1373
- 58 Johnson R., Ecker R.. The ethylene gas signal transduction pathway: A molecular perspective. Annu. Rev. Genet.. (1998); 32 227-254
- 59 Jonak C., Okresz L., Bogre L., Hirt H.. Complexity, cross talk and integration of plant MAP kinase signalling. Curr. Opin. Plant Biol.. (2002); 5 415-424
- 60 Karpinska B., Wingsle G., Karpinski S.. Antagonistic effects of hydrogen peroxide and glutathione on acclimation to excess excitation energy in Arabidopsis. . IUBMB Life. (2000); 50 21-26
- 61 Kenyon C.. A conserved regulatory system for aging. Cell. (2001); 105 165-168
- 62 Kirkwood T. B. L.. Evolution of ageing. Mechanisms of Ageing and Development. (2002); 123 737-745
- 63 Kirkwood T. B., Austad S. N.. Why do we age?. Nature. (2000); 408 233-238
- 64 Kurepa J., Smalle J., Van Montagu M., Inze D.. Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. Plant J.. (1998); 14 759-764
- 65 Leopold A. C.. Senescence in plant development. Science. (1961); 134 1727-1732
- 66 Li G., Hall T. C., Holmes-Davis R.. Plant chromatin: development and gene control. Bio. Essays. (2002); 24 234-243
- 67 Lin S. J., Kaeberlein M., Andalis A. A., Sturtz L. A., Defossez P. A., Culotta V. C., Fink G. R., Guarente L.. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature. (2002); 418 344-348
- 68 Liu Z., Hall J. D., Mount D. W.. Arabidopsis UVH3 gene is a homolog of the Saccharomyces cerevisiae RAD2 and human XPG DNA repair genes. Plant J.. (2001); 26 329-338
- 69 Liu Z., Hossain G. S., Islas-Osuna M. A., Mitchell D. L., Mount D. W.. Repair of UV damage in plants by nucleotide excision repair: Arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae Rad1. . Plant J.. (2000); 21 519-528
- 70 Longo V. D., Fabrizio P.. Regulation of longevity and stress resistance: a molecular strategy conserved from yeast to humans?. Cellular and Molecular Life Sciences. (2002); 59 903-908
- 71 Ludewig F., Sonnewald U.. High CO2-mediated down-regulation of photosynthetic gene transcripts is caused by accelerated leaf senescence rather than sugar accumulation. FEBS Letters. (2000); 479 19-24
- 72 Lusser A., Kolle D., Loidl P.. Histone acetylation: lessons from the plant kingdom. Trends Plant Sci.. (2001); 6 59-65
- 73 Masferrer A., Arro M., Manzano D., Schaller H., Fernandez-Busquets X., Moncalean P., Fernandez B., Cunillera N., Boronat A., Ferrer A.. Overexpression of Arabidopsis thaliana farnesyl diphosphate synthase (FPS1 S) in transgenic Arabidopsis induces a cell death/senescence-like response and reduced cytokinin levels. Plant J.. (2002); 20 123-132
- 74 Meinhard M., Grill E.. Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2 C from Arabidopsis. . FEBS Letters. (2001); 508 443-446
- 75 Mengiste T., Revenkova E., Bechtold N., Paszkowski J.. An SMC-like protein is required for efficient homologous recombination in Arabidopsis. . EMBO J.. (1999); 18 4505-4512
- 76 Merry B. J.. Molecular mechanisms linking calorie restriction and longevity. International Journal of Biochemistry and Cell Biology. (2002); 34 1340-1354
- 77 Miller A., Schlagnhaufer C., Spalding M., Rodermel S.. Carbohydrate regulation of leaf development: Prolongation of leaf senescence in Rubisco antisense mutants of tobacco. Photosynthesis Res.. (2000); 63 1-8
- 78 Miller A., Tsai C.-H., Hemphill D., Endres M., Rodermel S., Spalding M.. Elevated CO2 effects during leaf ontogeny: a new perspective on acclimation. Plant Physiol.. (1997); 115 1195-1200
- 79 Miller J. D., Arteca R. N., Pell E. J.. Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. . Plant Physiol.. (1999); 120 1015-1024
- 80 Mira H., Martinez N., Penarrubia L.. Expression of a vegetative-storage-protein gene from Arabidopsis is regulated by copper, senescence and ozone. Planta. (2002); 214 939-946
- 81 Mittler R.. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci.. (2002); 7 405-410
- 83 Morris K., Mackerness S. A. H., Page T., John C. F., Murphy A. M., Carr J. P., Buchanan-Wollaston V.. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J.. (2000); 23 677-685
- 84 Morrissey C., Buser A., Scolaro J., O'Sullivan J., Moquin A., Tenniswood M.. Changes in hormone sensitivity in the ventral prostate of aging Sprague-Dawley rats. Journal of Andrology. (2002); 23 341-351
- 85 Mou Z., He Y., Dai Y., Liu X., Li J.. Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology. Plant Cell. (2000); 12 405-418
- 86 Mou Z., Wang X., Fu Z., Dai Y., Han C., Ouyang J., Bao F., Hu Y., Li J.. Silencing of phosphoethanolamine N-methyltransferase results in temperature-sensitive male sterility and salt hypersensitivity in Arabidopsis. . Plant Cell. (2002); 14 2031-2043
- 87 Munne-Bosch S., Alegre L.. Plant aging increases oxidative stress in chloroplasts. Planta. (2002); 214 608-615
- 88 Nam H. G.. The molecular genetic analysis of leaf senescence. Curr. Opin. Biotechnol.. (1997); 8 200-207
- 89 Noh Y. S., Amasino R. M.. Identification of a promoter region responsible for the senescence-specific expression of SAG12. . Plant Mol. Biol.. (1999); 41 181-194
- 90 Oh S. A., Park J. H., Lee G. I., Paek K. H., Park S. K., Nam H. G.. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. . Plant J.. (1997); 12 527-535
- 91 Orendi G., Zimmermann P., Baar C., Zentgraf U.. Loss of stress-induced expression of catalase3 during leaf senescence in Arabidopsis thaliana is restricted to oxidative stress. Plant Sci.. (2001); 161 301-314
- 92 Ori N., Juarez M. T., Jackson D., Yamaguchi J., Banowetz G. M., Hake S.. Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene knotted1 under the control of a senescence-activated promoter. Plant Cell. (1999); 11 1073-1080
- 93 Orozco-Cardenas M., Narvaez-Vasquez J., Ryan C. A.. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell. (2001); 13 179-191
- 94 Orvar B. L., Ellis B. E.. Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury. Plant J.. (1997); 11 1297-1305
- 95 Park J. H., Oh S. A., Kim Y. H., Woo H. R., Nam H. G.. Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis. . Plant Mol. Biol.. (1998); 37 445-454
- 96 Partridge L.. Evolutionary theories of ageing applied to long-lived organisms. Experimental Gerontology. (2001); 36 641-650
- 97 Partridge L., Gems D.. Mechanisms of ageing: Public or private?. Nature Rev. Genetics. (2002); 3 165-175
- 98 Pugh T. D., Klopp R. G., Weindruch R.. Controlling caloric consumption: protocols for rodents and rhesus monkeys. Neurobiology of Aging. (1999); 20 157-165
- 99 Quirino B. F., Noh Y. S., Himelblau E., Amasino R. M.. Molecular aspects of leaf senescence. Trends Plant Sci.. (2000); 5 278-282
- 101 Quirino B. F., Reiter W. D., Amasino R. D.. One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence-associated. Plant Mol. Biol.. (2001); 46 447-457
- 102 Riha K., Fajkus J., Siroky J., Vyskot B.. Developmental control of telomere lengths and telomerase activity in plants. Plant Cell. (1998); 10 1691-1698
- 103 Riha K., McKnight T. D., Griffing L. R., Shippen D. E.. Living with genome instability: plant responses to telomere dysfunction. Science. (2001); 291 1797-1800
- 104 Rolland F., Moore B., Sheen J.. Sugar sensing and signalling in plants. Plant Cell Suppl.. (2002); S185-S205
- 105 Roy A. K., Oh T., Rivera O., Mubiru J., Song C. S., Chatterjee B.. Impacts of transcriptional regulation on aging and senescence. Ageing Res. Rev.. (2002); 1 367-380
- 106 Saintigny Y., Makienko K., Swanson C., Emond M. J., Monnat jr. R. J.. Homologous recombination resolution defect in Werner syndrome. Molecular and Cellular Biology. (2002); 22 6971-6978
- 107 Sandalio L. M., Dalurzo H. C., Gomez M., Romero-Puertas M. C., del Rio L. A.. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot.. (2001); 52 2115-2126
- 108 Santos V. C. L., Campos A., Azevedo H., Caldeira G.. In situ and in vitro senescence induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism. J. Exp. Bot.. (2001); 52 351-360
- 109 Schenk P. M., Kazan K., Wilson I., Anderson J. P., Richmond T., Somerville S. C., Manners J. M.. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA. (2000); 10 11655-11660
- 110 Sharma Y., Leon J., Davis K.. Ozone-induced responses in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc. Natl. Acad. Sci. USA. (1996); 93 5099-5104
- 111 Smart C. M.. Gene expression during leaf senescence. New Phytol.. (1994); 126 419-448
- 112 Smeekens S.. Sugar-induced signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.. (2000); 51 49-81
- 113 Smirnoff N., Conklin P. L., Loewus F. A.. Biosynthesis of ascorbic acid in plants: a renaissance. Annu. Rev. Plant Physiol. Plant Mol. Biol.. (2001); 52 437-467
- 114 Stirnberg P., van de Sande K., Leyser H. M. O.. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. . Development. (2002); 129 1131-1141
- 115 Thomas H., Howarth C. J.. Five ways to stay green. J. Exp. Bot.. (2000); 51 329-337
- 116 Thomas T.. Ageing in plants. Mechanisms of Ageing and Development. (2002); 123 747-753
- 117 Tian L., Chen Z. J.. Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. Proc. Natl. Acad. Sci. USA. (2001); 98 200-205
- 118 Tsuchiya T., Ohta H., Okawa K., Iwamatsu A., Shimada H., Masuda T., Takamiya K.. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc. Natl. Acad. Sci. USA. (1999); 96 15362-15367
- 119 Varshavsky A., Turner G., Du F., Xie Y.. The ubiquitin system and the N-end rule pathway. Biol. Chem.. (2000); 381 779-789
- 120 Weaver L. M., Gan S., Quirino B., Amasino R. M.. A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol. Biol.. (1998); 37 455-469
- 121 Wellesen K., Durst F., Pinot F., Benveniste I., Nettesheim K., Wisman E., Steiner-Lange S., Saedler H., Yephremov A.. Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid-hydroxylation in development. Proc. Natl. Acad. Sci. USA. (2001); 98 9694-9699
- 122 Willekens H., Chamnongpol S., Davey M., Schraudner M., Langebartels C., Van Montagu M., Inze D., Van Camp W.. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J.. (1997); 16 4806-4816
- 123 Wingler A., von Schaewen A., Leegood R. C., Lea P. J., Quick W. P.. Regulation of leaf senescence by cytokinin, sugars, and light: effects on NADH-dependent hydroxypyruvate reductase. Plant Physiol.. (1998); 116 329-335
- 124 Wolf F. I., Torsello A., Covacci V., Fasanella S., Montanari M., Boninsegna A., Cittadini A.. Oxidative DNA damage as a marker of aging in WI-38 human fibroblasts. Experimental Gerontology. (2002); 37 647-656
- 125 Woo H. R., Chung K. M., Park J. H., Oh S. A., Ahn T., Hong S. H., Jang S. K., Nam H. G.. ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. . Plant Cell. (2001); 13 1779-1790
- 126 Woo H. R., Goh C. H., Park J. H., de la Serve B. T., Kim J. H., Park Y. I., Nam H. G.. Extended leaf longevity in the ore4-1 mutant of Arabidopsis with a reduced expression of a plastid ribosomal protein gene. Plant J.. (2002); 31 331-340
- 127 Wu K., Malik K., Tian L., Brown D., Miki B.. Functional analysis of a RPD3 histone deacetylase homologue in Arabidopsis thaliana. . Plant Mol. Biol.. (2000 a); 44 167-176
- 128 Wu K., Tian L., Malik K., Brown D., Miki B.. Functional analysis of HD2 histone deacetylase homologues in Arabidopsis thaliana. . Plant J.. (2000 b); 22 19-27
- 129 Xiao W., Sheen J., Jang J. C.. The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol. Biol.. (2000); 44 451-461
- 130 Ye Z., Rodriguez R., Tran A., Hoang H., de los Santos D., Brown S., Vellanoweth R. L.. The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. . Plant Sci.. (2000); 158 115-127
- 131 Yin Y., Wang Z. Y., Mora-Garcia S., Li J., Yoshida S., Asami T., Chory J.. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell. (2002); 109 181-191
- 132 Yoshida S., Ito M., Nishida I., Watanabe A.. Identification of a novel gene HYS1/CPR5 that has a repressive role in the induction of leaf senescence and pathogen-defence responses in Arabidopsis thaliana. . Plant J.. (2002 a); 29 427-437
- 133 Yoshida S., Ito M., Callis J., Nishida I., Watanabe A.. A delayed leaf senescence mutant is defective in arginyl-tRNA: protein arginyltransferase, a component of the N-end rule pathway in Arabidopsis. . Plant J.. (2002 b); 32 129-137
- 134 Young J., Smith J. R.. Epigenetic aspects of cellular senescence. Experimental Gerontology. (2000); 35 23-32
P. P. Dijkwel
Molecular Biology of Plants
Groningen Biomolecular Sciences and Biotechnology Institute
University of Groningen
Kerklaan 30
9751 NN, Haren
The Netherlands
Email: p.p.dijkwel@biol.rug.nl
Section Editor: L. A. C. J. Voesenek