Plant Biol (Stuttg) 2003; 5(5): 481-490
DOI: 10.1055/s-2003-44781
Original Paper

Georg Thieme Verlag Stuttgart · New York

Import Pathway of Nuclear-Encoded Cytochrome c Oxidase Subunit 2 Using Yeast as a Model

S. R. Qualmann 1 , D. O. Daley 2 , 3 , J. Whelan 2 , E. Pratje 1
  • 1Institut für Allgemeine Botanik und Botanischer Garten, Universität Hamburg, Hamburg, Germany
  • 2School of Biomedical and Life Sciences, University of Western Australia, Crawley, Australia
  • 3Present address: Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
Further Information

Publication History

Publication Date:
27 November 2003 (online)

Abstract

Subunit 2 of cytochrome c oxidase (Cox2) is a mitochondrial-encoded protein in most organisms. In soybean Glycine max a second Cox2 gene was identified in the nucleus which is functional, whereas the mitochondrial-encoded cox2 gene is silent. For import and sorting of the nuclear-encoded soybean Cox2 protein (GmCox2p) into mitochondria, the protein has acquired an N-terminal extension of 136 amino acid residues that is cleaved off in three steps during import. To study the function and processing of the GmCox2p leader peptide, we used yeast as a model system. Using different leader peptide-GFP constructs, we were able to show that the i1 intermediate is generated in the mitochondrial matrix and the mature protein is generated in the inner membrane space. Mitochondrial processing peptidase (MPP) is involved in processing the first part of the leader peptide, processing of the last part is catalysed by the inner membrane peptidase (IMP). Oxa1p is necessary for insertion of the protein into the inner mitochondrial membrane. GmCox2p therefore utilises many of the same components as its mitochondrial-encoded predecessor, for sorting and maturation, following its import into the mitochondria.

References

  • 1 Adams K. L., Song K., Roessler P. G., Nugent J. M., Doyle J. L., Doyle J. J., Palmer J. D.. Intracellular gene transfer in action: Dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes.  Proc. Natl. Acad. Sci. USA. (1999);  96 13863-13868
  • 2 Bauer M., Esser K., Michaelis G., Pratje E.. PET1402, a nuclear gene required for proteolytic processing of cytochrome oxidase subunit 2 in yeast.  Mol. Gen. Genet.. (1994);  245 272-278
  • 3 Behrens M., Michaelis G., Pratje E.. Mitochondrial inner membrane protease 1 of Saccharomyces cerevisiae shows sequence similarity to the Escherichia coli leader peptidase.  Mol. Gen. Genet.. (1991);  228 167-176
  • 4 Bömer U., Rassow J., Zufall N., Pfanner N., Meijer M., Maarse A. C.. The preprotein translocase of the inner mitochondrial membrane: evolutionary conservation of targeting and assembly of Tim 17.  J. Mol. Biol.. (1996);  262 389-395
  • 5 Braun H. P., Emmermann M., Kruft V., Schmitz U. K.. Cytochrome c1 from potato: a protein with a presequence for targeting to the mitochondrial intermembrane space.  Mol. Gen. Genet.. (1992);  231 217-225
  • 6 Braun H. P., Schmitz U. K.. The bifunctional cytochrome c reductase/processing peptidase complex from plant mitochondria.  J. Bioenerg. Biomembr.. (1995);  27 423-436
  • 7 Braun H. P., Schmitz U. K.. The protein import apparatus of plant mitochondria.  Planta. (1999);  209 267-274
  • 8 Brunner M., Klaus C., Neupert W.. The mitochondrial processing peptidase. von Heijne, G., ed. Signal Peptidases. Austin; RG Landes Company (1994): 73-86
  • 9 Chen X., Van Valkenburgh C., Fang H., Green N.. Signal peptides having standard and nonstandard cleavage sites can be processed by Imp1p of the mitochondrial inner membrane protease.  J. Biol. Chem.. (1999);  274 37750-37754
  • 10 Covello P. S., Gray M. W.. Silent mitochondrial and active nuclear genes for subunit 2 of cytochrome c oxidase (cox2) in soybean: evidence for RNA-mediated gene transfer.  EMBO J.. (1992);  11 3815-3820
  • 11 Daley D. O., Adams K. L., Clifton R., Qualmann S., Millar A. H., Palmer J. D., Pratje E., Whelan J.. Gene transfer from mitochondrion to the nucleus: novel mechanisms for gene activation from Cox2.  Plant J.. (2002 a);  30 11-21
  • 12 Daley D. O., Clifton R., Whelan J.. Intracellular gene transfer: reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase.  Proc. Natl. Acad. Sci. USA. (2002 b);  99 10510-10515
  • 13 Day D. A., Neuberger M., Douce R.. Biochemical characterization of chlorophyll-free mitochondria from pea leaves.  Aust. J. Plant. Physiol.. (1985);  12 219-228
  • 14 Eriksson A. C., Glaser E.. Mitochondrial processing proteinase: a general processing proteinase of spinach leaf mitochondria is a membrane-bound enzyme.  Biochim. Biophys. Acta. (1992);  1186 221-231
  • 15 Esser K., Pratje E., Michaelis G.. SOM1, a small new gene required for mitochondrial inner membrane peptidase function in Saccharomyces cerevisiae. .  Mol. Gen. Genet.. (1996);  252 427-445
  • 16 Esser K., Tursun B., Ingenhoven M., Michaelis G., Pratje E.. A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1.  J. Mol. Biol.. (2002);  323 835-843
  • 17 Funes S., Davidson E., Reyes-Prieto A., Magallón S., Herion P., King M. P., González-Halphen D.. A green algal apicomplast ancestor.  Science. (2002);  298 2155
  • 18 Gardner  et al. M. J.. Genome sequence of the human malaria parasite Plasmodium falciparum. .  Nature. (2002);  419 498-511
  • 19 Gavel Y., von Heijne G.. Cleavage-site motifs in mitochondrial targeting peptides.  Protein Engineering. (1990);  4 33-37
  • 20 Glick B. S., Brandt A., Cunningham K., Müller S., Hallberg R. L., Schatz G.. Cytochromes c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism.  Cell. (1992);  69 809-822
  • 21 Gray M. W., Burger G., Lang B. F.. Mitochondrial evolution.  Science. (1999);  283 1476-1481
  • 22 Hahne K., Haucke V., Ramage L., Schatz G.. Incomplete arrest in the outer membrane sorts NADH-cytochrome b5 reductase to two different submitochondrial compartments.  Cell. (1994);  79 829-839
  • 23 Hamel P., Sakamoto W., Wintz H., Dujardin G.. Functional complementation of an oxa1 yeast mutant identifies an Arabidopsis thaliana cDNA involved in the assembly of respiratory complexes.  Plant J.. (1997);  12 1319-1327
  • 24 Hartl F. U., Neupert W.. Protein sorting to mitochondria: Evolutionary conservations of folding and assembly.  Science. (1990);  247 930-938
  • 25 Hartl F. U., Ostermann J., Guiard B., Neupert W.. Successive translocation into and out of the mitochondrial matrix: targeting proteins to the intermembrane space by a bipartite signal peptide.  Cell. (1987);  51 1027-1103
  • 26 He S., Fox T. D.. Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export of N and C termini and dependence of the conserved protein Oxa1p.  Mol. Biol. Cell. (1997);  8 1449-1460
  • 27 Heins L., Schmitz U. K.. A receptor for protein import into potato mitochondria.  Plant J.. (1996);  9 829-839
  • 28 Hell K., Herrmann J. M., Pratje E., Neupert W., Stuart R. A.. Oxa1p mediates the export of the N- and C-termini of pCoxII from the mitochondrial matrix to the innermembrane space.  FEBS Lett.. (1997);  418 367-370
  • 29 Hell K., Herrmann J. M., Pratje E., Neupert W., Stuart R. A.. Oxa1p, an essential component of the N-tail protein export machinery in mitochondria.  Proc. Natl. Acad. Sci. USA. (1998);  95 2250-2255
  • 30 Hill J. E., Myers A. M., Koerner T. J., Tzagoloff A.. Yeast/E. coli shuttle vectors with multiple unique restriction sites.  Yeast. (1986);  2 163-167
  • 31 Jänsch L., Kruft V., Schmitz U. K., Braun H.-P.. Unique composition of the preprotein translocase of the outer mitochondrial membrane from plants.  J. Biol. Chem.. (1998);  273 17251-17257
  • 32 Jan P.-S., Esser K., Pratje E., Michaelis G.. Som1, a third component of the yeast mitochondrial inner membrane peptidase complex that contains Imp1 and Imp2.  Mol. Gen. Genet.. (2000);  263 483-491
  • 33 Lang B. F., Gray M. W., Burger G.. Mitochondrial genome evolution and the origin of eukaryotes.  Annu. Rev. Genet.. (1999);  33 351-397
  • 34 Lister R., Murcha M. W., Whelan J.. The mitochondrial protein import machinery of plants (MPIMP) database.  Nuc. Acids Research. (2003);  31 325-327
  • 35 Meyer W., Bauer M., Pratje E.. A mutation in cytochrome c subunit 2 restores respiration of mutant pet ts1402.  Curr. Genet.. (1997 a);  31 401-407
  • 36 Meyer W., Bömer U., Pratje E.. Mitochondrial inner membrane bound Pet1402 is rapidly imported into mitochondria and effects the integrity of the cytochrome oxidase and ubichinol-cytochrome c oxidoreductase complexes.  Biol. Chem.. (1997 b);  378 1373-1379
  • 37 Murcha M. W., Lister R., Ho A. Y. Y., Whelan J.. Identification, expression, and import of components 17 and 23 of the inner mitochondrial membrane translocase from Arabidopsis. .  Plant Phys.. (2003);  131 1-11
  • 38 Niidome T., Kitada S., Shimokata K., Ogishima T., Ito A.. Arginine residues in the extension peptides are required for cleavage of a precursor by mitochondrial processing peptidase. Demonstration using synthetic peptide as a substrate.  J. Biol. Chem.. (1994);  269 24719-24722
  • 39 Nguyen M., Bell A. W., Shore G. C.. Protein sorting between mitochondrial membranes specified by position of the stop-transfer domain.  J. Cell Biol.. (1988);  106 1499-1505
  • 40 Nugent J. M., Palmer J. D.. RNA-mediated transfer of the coxII gene from the mitochondrion to the nucleus during flowering plant evolution.  Cell. (1991);  66 473-481
  • 41 Nunnari J., Fox T. D., Walter P.. A mitochondrial protease with two catalytic subunits of nonoverlapping specificities.  Science. (1993);  262 1997-2004
  • 42 Okamoto K., Brinker A., Paschen S. A., Moarefi I., Hayer-Hartl M., Neupert W., Brunner M.. The protein import motor of mitochondria: a targeted molecular ratchet driving unfolding and translocation.  EMBO J.. (2002);  21 3659-3671
  • 43 Pérez-Martínez X., Antaramian A., Vázquez-Acevedo M., Funes S., Tolkunovas E., d'Alayer J., Claros M. G., Davidson E., King M. P., González-Halphen D.. Subunit II of cytochrome c oxidase in Chlamydomonad algae is a heterodimer encoded by two independent nuclear genes.  J. Biol. Chem.. (2001);  276 11302-11309
  • 44 Perryman R. A., Mooney B., Harmey M. A.. Identification of a 42-kDa plant mitochondrial outer membrane protein, TOM42, involved in the import of precursor proteins into plant mitochondria.  Arch. Biochem. Biophys.. (1995);  316 659-664
  • 45 Pfanner N., Geissler A.. Versality of the mitochondrial protein import machinery.  Nature Rev.. (2001);  2 339-349
  • 46 Pfanner N., Neupert W.. Distinct stepps in the import of ADP/ATP carrier into mitochondria.  J. Biol. Chem.. (1987);  262 7528-7536
  • 47 Pratje E., Esser K., Michaelis G.. The mitochondrial inner membrane peptidase. von Heijne, G., ed. Signal Peptidases. Austin; RG Landes Company (1994): 105-112
  • 48 Pratje E., Guiard B.. One nuclear gene controls the removal of transient presequences from two yeast proteins: one encoded by the nuclear the other by the mitochondrial genome.  EMBO J.. (1986);  5 1313-1317
  • 49 Pratje E., Mannhaupt G., Michaelis G., Beyreuther K.. A nuclear mutation prevents processing of a mitochondrially encoded membrane protein in Saccharomyces cerevisiae. .  EMBO J.. (1983);  2 1049-1054
  • 50 Pratje E., Michaelis G.. Allelism studies of mitochondrial mutants resistant to antimycin A or funiculosin in Saccharomyces cerevisiae. .  Mol. Gen. Genet.. (1977);  152 167-184
  • 51 Rojo E. E., Guiard B., Neupert W., Stuart R. A.. Sorting of D-lactate dehydrogenase to the inner membrane of mitochondria. Analysis of topogenic signal and energetic requirements.  J. Biol. Chem.. (1998);  273 8040-8047
  • 52 Schneider G., Sjöling S., Wallin E., Wrede P., Glaser E., von Heijne G.. Feature-extraction in mitochondrial targeting peptides.  PROTEINS: Structure, Function, and Genetics. (1998);  30 49-60
  • 53 Stuart R. A.. Insertion of proteins into the inner membrane of mitochondria: the role of the Oxa1 complex.  Biochim. Biophys. Acta. (2002);  1592 79-87
  • 54 Szigyarto C., Dessi P., Smith M. K., Knorpp C., Harmey M. A., Day D. A., Glaser E., Whelan J.. A matrix-located processing peptidase of plant mitochondria.  Plant Mol. Biol.. (1998);  36 171-181
  • 55 Towbin H., Staehlin T., Gordon J.. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.  Proc. Natl. Acad. Sci. USA. (1979);  76 4350-4354
  • 56 Yaffee M. P., Schatz G.. Two nuclear mutations that block mitochondrial protein import in yeast.  Proc. Natl. Acad. Sci. USA. (1984);  81 4819-4823
  • 57 Zhang X.-P., Sjöling S., Tanudij M., Somogyi L., Andreu D., Eriksson L. E. G., Gräslund A., Whelan J., Glaser E.. Mutagenesis and computer modelling approach to study determinants for recognition of signal peptides by the mitochondrial processing peptidase.  Plant J.. (2001);  27 427-438
  • 58 Zimmermann R., Neupert W.. Transport of proteins into mitochondria. Posttranslational transfer of ADP/ATP carrier into mitochondria in vitro. .  Eur. J. Biochem.. (1980);  109 217-229

E. Pratje

Institut für Allgemeine Botanik und Botanischer Garten
Universität Hamburg

Ohnhorststraße 18

22609 Hamburg

Germany

Email: pratje@botanik.uni-hamburg.de

Section Editor: H. Rennenberg