Der Nuklearmediziner 2003; 26(4): 292-299
DOI: 10.1055/s-2003-44826
Multimodale Bildgebung

© Georg Thieme Verlag Stuttgart · New York

Rolle der nuklearmedizinischen Verfahren und der Magnetresonanztomographie in der kardialen Diagnostik

Role of Nuclear Medicine and Magnetic Resonance Imaging in Cardiac DiagnosticsH. P. Bülow1 , F. M. Bengel1
  • 1Nuklearmedizinische Klinik und Poliklinik der Technischen Universität München, Germany
Further Information

Publication History

Publication Date:
19 December 2003 (online)

Zusammenfassung

Nuklearmedizinische Untersuchungsmethoden finden ebenso wie die Magnetresonanztomographie (MRT) in der kardialen Diagnostik eine breite Anwendung. Zur Beurteilung der regionalen und globalen Wandbewegung sowie der Bestimmung von Ejektionsfraktion und Herzvolumina sind beide Techniken ausreichend evaluiert und äquivalent einsetzbar, wenngleich die MRT hier mittlerweile als Goldstandard angesehen wird. Hinsichtlich Untersuchungen der myokardialen Perfusion liegen für die nuklearmedizinischen Verfahren umfangreiche Daten vor, die neben einer hohen diagnostischen Genauigkeit zur Erkennung der koronaren Herzerkrankung eine zusätzliche prognostische Aussage belegen und eine unabhängige Risikostratifizierung der Patienten erlauben. Die kardiale MRT bietet, dank des raschen technischen Fortschritts, ebenfalls die Möglichkeit zur Beurteilung der myokardialen Perfusion. Die bisherigen Studien hierzu erscheinen vielversprechend, allerdings ist die Datenlage im Gegensatz zur Myokardszintigraphie noch wenig umfangreich. In der Vitalitätsdiagnostik bei ischämisch bedingter Herzinsuffizienz gilt gegenwärtig die Positronen-Emissions-Tomographie mit FDG als Goldstandard. Die Single-Photonen-Emissionscomputertomographie (SPECT) mit Tl-201 oder Tc-99m-markierten Tracern, wie auch die MRT als niedrig dosierte Dobutamin-Stress-Untersuchung oder als kontrastmittelverstärkte MRT weisen aber ähnlich gute Ergebnisse auf.
Nuklearmedizinische Verfahren und MRT liefern in einigen diagnostischen Teilbereichen Ergebnisse, die mit der jeweils anderen Methode nicht zu erzielen sind. Beispiele hierfür sind die Evaluierung der sympathischen Innervation, der Endothelfunktion, der Zellapoptose und des Gentransfers auf nuklearmedizinischer Seite sowie die Beurteilung der dreidimensionalen myokardialen Kontraktion, die nicht-invasive Koronarangiographie, die Gefäßwanddarstellung und die Echtzeitbildgebung mit der MRT.
Bildfusionen aus nuklearmedizinischen Verfahren und MRT werden gegenwärtig nur zur vergleichenden Evaluation beider Methoden verwendet. Zukünftig sind aber klinische Anwendungen denkbar, z. B. durch Projektion funktioneller nuklearmedizinischer Bilder auf hochauflösende, morphologische MRT-Bilder.
Aufgrund der zunehmenden Bedeutung der nichtinvasiven Diagnostik in der Kardiologie werden sowohl der Nuklearkardiologie als auch der Kardio-MRT, die nicht nur kompetitiv sondern auch komplementär einsetzbar sind, zukü nftig eine wesentliche diagnostische Rolle zukommen.

Abstract

Nuclear medicine and magnetic resonance imaging (MRI) are widely used in cardiac diagnostics. Both techniques have been carefully evaluated and are equivalent for the assessment of regional and global wall motion as well as the evaluation of ejection fraction and cardiac volumes, though MRI is herein currently seen as gold standard. For evaluation of myocardial perfusion, extensive data exist for nuclear imaging, that, next to high diagnostic accuracy for evaluation of coronary artery disease, show incremental prognostic information and allow for independent risk stratification. Because of rapid technical advance, myocardial perfusion imaging has also become feasible with cardiac MRI. Results of recent studies are promising, but the data are few compared to perfusion scintigraphy. For viability assessment in patients with ischemic cardiomyopathy, positron emission tomography (PET) with FDG is currently seen as gold standard. However, single photon emission computed tomography (SPECT) with Tl-201 or Tc-99m based tracers and MRI with low dose dobutamine or late enhancement-technique show almost similar results.
In some areas, nuclear imaging and MRI each provide information, which can not be achieved with the other technique. Nuclear medicine examples are the evaluation of cardiac sympathetic innervation, endothelial function, cell apoptosis and gene transfer, while the assessment of three-dimensional contraction, non-invasive coronary angiography, vessel wall imaging and real-time imaging may be listed for MRI.
Image fusion of nuclear studies and MRI are currently used only for comparative evaluation of both methods. Future clinical applications however may be possible, e. g., for the projection of functional nuclear images on high resolution, morphological MR-images.
Because of the increasing importance of non-invasive diagnostics in cardiology, nuclear cardiology and cardiac MRI, which can be used not only competitively but also complementarily, will both play an important future role.

Literatur

  • 1 Allman K C, Shaw L J, Hachamovitch R, Udelson J E. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis.  J Am Coll Cardiol. 2002;  39 1151-1158
  • 2 Baer F M, Theissen P, Schneider C A. et al . Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization.  J Am Coll Cardiol. 1998;  31 1040-1048
  • 3 Baer F M, Voth E, Schneider C A, Theissen P, Schicha H, Sechtem U. Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F] fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability.  Circulation. 1995;  91 1006-1015
  • 4 Bengel F M, Anton M, Avril N. et al . Uptake of radiolabeled 2′-fluoro-2′-deoxy-5-iodo-1-beta-D-arabinofuranosyluracil in cardiac cells after adenoviral transfer of the herpesvirus thymidine kinase gene: the cellular basis for cardiac gene imaging.  Circulation. 2000;  102 948-950
  • 5 Blankenberg F G, Katsikis P D, Tait J F. et al . Imaging of apoptosis (programmed cell death) with 99mTc annexin V.  J Nucl Med. 1999;  40 184-191
  • 6 Botnar R M, Stuber M, Kissinger K V, Kim W Y, Spuentrup E, Manning W J. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging.  Circulation. 2000;  102 2582-2587
  • 7 Chin B B, Bloomgarden D C, Xia W. et al . Right and left ventricular volume and ejection fraction by tomographic gated blood-pool scintigraphy.  J Nucl Med. 1997;  38 942-948
  • 8 Gunning M G, Anagnostopoulos C, Knight C J. et al . Comparison of 201Tl, 99mTc-tetrofosmin, and dobutamine magnetic resonance imaging for identifying hibernating myocardium.  Circulation. 1998;  98 1869-1874
  • 9 Haas F, Haehnel C J, Picker W. et al . Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease.  J Am Coll Cardiol. 1997;  30 1693-1700
  • 10 Hachamovitch R, Berman D S, Kiat H. et al . Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification.  Circulation. 1996;  93 905-914
  • 11 Hachamovitch R, Berman D S, Kiat H. et al . Incremental prognostic value of adenosine stress myocardial perfusion single-photon emission computed tomography and impact on subsequent management in patients with or suspected of having myocardial ischemia.  Am J Cardiol. 1997;  80 426-433
  • 12 Hachamovitch R, Berman D S, Shaw L J. et al . Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction.  Circulation. 1998;  97 535-543
  • 13 Herrmann J, Lerman A. The endothelium: dysfunction and beyond.  J Nucl Cardiol. 2001;  8 197-206
  • 14 Hoogendoorn L I, Pattynama P M, Buis B, van der Geest R J, van der Wall E E, de Roos A. Noninvasive evaluation of aortocoronary bypass grafts with magnetic resonance flow mapping.  Am J Cardiol. 1995;  75 845-848
  • 15 Hyun I Y, Kwan J, Park K S, Lee W H. Reproducibility of Tl-201 and Tc-99m sestamibi gated myocardial perfusion SPECT measurement of myocardial function.  J Nucl Cardiol. 2001;  8 182-187
  • 16 Ibrahim T, Nekolla S G, Schreiber K. et al . Assessment of coronary flow reserve: comparison between contrast-enhanced magnetic resonance imaging and positron emission tomography.  J Am Coll Cardiol. 2002;  39 864-870
  • 17 Ioannidis J P, Trikalinos T A, Danias P G. Electrocardiogram-gated single-photon emission computed tomography versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction: a meta-analysis.  J Am Coll Cardiol. 2002;  39 2059-2068
  • 18 Iskander S, Iskandrian A E. Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging.  J Am Coll Cardiol. 1998;  32 57-62
  • 19 Kauffman G J, Boyne T S, Watson D D, Smith W H, Beller G A. Comparison of rest thallium-201 imaging and rest technetium-99m sestamibi imaging for assessment of myocardial viability in patients with coronary artery disease and severe left ventricular dysfunction.  J Am Coll Cardiol. 1996;  27 1592-1597
  • 20 Keijer J T, van Rossum A C, van Eenige M J. et al . Magnetic resonance imaging of regional myocardial perfusion in patients with single-vessel coronary artery disease: quantitative comparison with (201)Thallium-SPECT and coronary angiography.  J Magn Reson Imaging. 2000;  11 607-615
  • 21 Kim R J, Wu E, Rafael A. et al . The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction.  N Engl J Med. 2000;  343 1445-1453
  • 22 Kim W Y, Danias P G, Stuber M. et al . Coronary magnetic resonance angiography for the detection of coronary stenoses.  N Engl J Med. 2001;  345 1863-1869
  • 23 Klein C, Nekolla S G, Bengel F M. et al . Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography.  Circulation. 2002;  105 162-167
  • 24 Levine M G, McGill C C, Ahlberg A W. et al . Functional assessment with electrocardiographic gated single-photon emission computed tomography improves the ability of technetium-99m sestamibi myocardial perfusion imaging to predict myocardial viability in patients undergoing revascularization.  Am J Cardiol. 1999;  83 1-5
  • 25 Machecourt J, Longere P, Fagret D. et al . Prognostic value of thallium-201 single-photon emission computed tomographic myocardial perfusion imaging according to extent of myocardial defect. Study in 1 926 patients with follow-up at 33 months.  J Am Coll Cardiol. 1994;  23 1096-1106
  • 26 Marwick T H, Shaw L J, Lauer M S. et al . The noninvasive prediction of cardiac mortality in men and women with known or suspected coronary artery disease. Economics of Noninvasive Diagnosis (END) Study Group.  Am J Med. 1999;  106 172-178
  • 27 Matheijssen N A, Louwerenburg H W, van Rugge F P. et al . Comparison of ultrafast dipyridamole magnetic resonance imaging with dipyridamole SestaMIBI SPECT for detection of perfusion abnormalities in patients with one-vessel coronary artery disease: assessment by quantitative model fitting.  Magn Reson Med. 1996;  35 221-228
  • 28 Mogelvang J, Lindvig K, Sondergaard L, Saunamaki K, Henriksen O. Reproducibility of cardiac volume measurements including left ventricular mass determined by MRI.  Clin Physiol. 1993;  13 587-597
  • 29 Nagel E, Klein C, Paetsch I. et al . Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease.  Circulation. 2003;  108 432-437
  • 30 Neubauer S. Magnetic resonance spectroscopy for the non-invasive evaluation of cardiac metabolism. In: Bogart JAD, Rademakers F (eds). Clinical applications of MRI in cardiovascular diesease. 1999
  • 31 Ragosta M, Beller G A, Watson D D, Kaul S, Gimple L W. Quantitative planar rest-redistribution 201Tl imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary bypass surgery in patients with severely depressed left ventricular function.  Circulation. 1993;  87 1630-1641
  • 32 Ramani K, Judd R M, Holly T A. et al . Contrast magnetic resonance imaging in the assessment of myocardial viability in patients with stable coronary artery disease and left ventricular dysfunction.  Circulation. 1998;  98 2687-2694
  • 33 Ritchie J L, Bateman T M, Bonow R O. et al . Guidelines for clinical use of cardiac radionuclide imaging. Report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Committee on Radionuclide Imaging), developed in collaboration with the American Society of Nuclear Cardiology.  J Am Coll Cardiol. 1995;  25 521-547
  • 34 Schaefer W M, Lipke C S, Nowak B. et al . Validation of an evaluation routine for left ventricular volumes, ejection fraction and wall motion from gated cardiac FDG PET: a comparison with cardiac magnetic resonance imaging.  Eur J Nucl Med Mol Imaging. 2003;  30 545-553
  • 35 Schafers M, Schober O, Lerch H. Cardiac sympathetic neurotransmission scintigraphy.  Eur J Nucl Med. 1998;  25 435-441
  • 36 Schwaiger M, Melin J. Cardiological applications of nuclear medicine.  Lancet. 1999;  354 661-666
  • 37 Schwitter J, DeMarco T, Kneifel S. et al . Magnetic resonance-based assessment of global coronary flow and flow reserve and its relation to left ventricular functional parameters: a comparison with positron emission tomography.  Circulation. 2000;  101 2696-2702
  • 38 Sharir T, Germano G, Kavanagh P B. et al . Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography.  Circulation. 1999;  100 1035-1042
  • 39 Shaw L J, Hachamovitch R, Berman D S. et al . The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. Economics of Noninvasive Diagnosis (END) Multicenter Study Group.  J Am Coll Cardiol. 1999;  33 661-669
  • 40 Smanio P E, Watson D D, Segalla D L, Vinson E L, Smith W H, Beller G A. Value of gating of technetium-99m sestamibi single-photon emission computed tomographic imaging.  J Am Coll Cardiol. 1997;  30 1687-1692
  • 41 Underwood S R, Godman B, Salyani S, Ogle J R, Ell P J. Economics of myocardial perfusion imaging in Europe - the EMPIRE Study.  Eur Heart J. 1999;  20 157-166
  • 42 Vanzetto G, Ormezzano O, Fagret D, Comet M, Denis B, Machecourt J. Long-term additive prognostic value of thallium-201 myocardial perfusion imaging over clinical and exercise stress test in low to intermediate risk patients: study in 1 137 patients with 6-year follow-up.  Circulation. 1999;  100 1521-1527
  • 43 Wagner A, Mahrholdt H, Holly T A. et al . Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study.  Lancet. 2003;  361 374-379
  • 44 Zerhouni E A, Parish D M, Rogers W J, Yang A, Shapiro E P. Human heart: tagging with MR imaging - a method for noninvasive assessment of myocardial motion.  Radiology. 1988;  169 59-63

Dr. med. H. P. Bülow

Nuklearmedizinische Klinik und Poliklinik

Technische Universität München

Klinikum rechts der Isar

Ismaninger Str. 22

81675 München

Germany

Phone: +49-89-41 40-29 71

Fax: +49-89-41 40-49 50

Email: h.buelow@lrz.tu-muenchen.de