References
1 For example, see: Taniguchi N.
Honke K.
Fukuda M.
Handbook of Glycosyltransferases and Related Genes
Springer-Verlag:
2002.
p.205
2
Stapleton A.
Stround MR.
Hakomori S.
Stamm WE.
Infect. Immun.
1998,
66:
3856
3
Compain P.
Martin OR.
Bioorg. Med. Chem.
2001,
9:
3077
4a
König WA.
Hahn H.
Rathman R.
Hass W.
Keckeisen A.
Hagenmaier H.
Bormann C.
Dehler W.
Kurth R.
Zähner H.
Liebigs Ann. Chem.
1986,
407
4b
Saksena AK.
Lovey RG.
Girijavallabhan VM.
Guzik H.
Ganguly AK.
Tetrahedron Lett.
1993,
34:
3267
5
Dahn U.
Hagenmeier H.
Höhne H.
König WA.
Wolf G.
Zähner H.
Arch. Microbiol.
1976,
107:
143
6a
Vassilev VP.
Uchiyama T.
Kajimoto T.
Wong CH.
Tetrahedron Lett.
1995,
36:
4081
6b
Vassilev VP.
Uchiyama T.
Kajimoto T.
Wong CH.
Tetrahedron Lett.
1995,
36:
5063
6c
Shibata K.
Shingu K.
Vassilev VP.
Nishide K.
Fujita T.
Node M.
Kajimoto T.
Wong CH.
Tetrahedron Lett.
1996,
37:
2791
6d
Fujii M.
Miura T.
Kajimoto T.
Ida Y.
Synlett
2000,
1046
6e
Nishide K.
Shibata K.
Fujita T.
Kajimoto T.
Wong CH.
Heterocycles
2000,
52:
1191
6f
Miura T.
Kajimoto T.
Chirality
2001,
577
7
Miura T.
Fujii M.
Shingu K.
Koshimizu I.
Naganoma J.
Kajimoto T.
Ida Y.
Tetrahedron Lett.
1998,
39:
7313
8a The absolute stereochemistry of the a-carbon was determined to be l-configuration by the observation that 5a and 5b were not substrates of the d-amino acid oxidase but those of the l-amino acid oxidase. The erythro- and threo-configuration was determined by converting to the corresponding oxazolidones treating with ethyl chlorocarbonate in 1 M aq NaOH. See also: Saeed A.
Yong DW.
Tetrahedron
1992,
48:
2507
8b
Kaneko T.
Inui T.
Bull. Chem. Soc. Jpn.
1961,
82:
1075
9
Udodong UE.
Rao CS.
Fraser-Reid B.
Tetrahedron Lett.
1992,
48:
4713
10 Compound 13a: 1H NMR (CDCl3): δ = 1.14 (d, 3 H, J = 6.5 Hz, Me-6), 1.69 (m, 2 H), 2.00, 2.08, 2.17 (s, each 3 H, 3 × Ac), 2.13 (m, 2 H), 3.41 (dt, 1 H, J = 10.0, 6.5 Hz, A part of AB type), 3.69 (dt, 1 H, J = 10.0 Hz, B part of AB type), 4.16 (br q, 1 H, J = 6.5 Hz, H-5), 4.95-5.02 (m, 2 H), 5.05 (d, 1 H, J = 4.0 Hz, H-1), 5.11 (dd, 1 H, J = 4.0, 10.5 Hz, H-2), 5.30 (dd, 1 H, J = 1.0, 3.5 Hz, H-4), 5.35 (dd, 1 H, J = 3.5, 10.5 Hz, H-3), 5.81 (ddt, 1 H, J = 10.5, 17.0, 7.5 Hz). 13C NMR (CDCl3): δ = 15.8, 20.6 × 2, 20.7, 28.4, 30.0, 64.2, 67.5, 68.0, 68.2, 71.1, 96.0, 115.0, 137.7, 170.0, 170.4, 170.6.
11 Compound 13b: 1H NMR (CDCl3): δ = 1.23 (d, 3 H, J = 6.5 Hz, Me-6), 1.70 (m, 2 H), 2.00, 2.06, 2.18 (s, each 3 H, 3 × Ac), 2.11 (m, 2 H), 3.49 (m, 1 H), 3.81 (br q, 1 H, J = 6.5 Hz, H-5), 3.92 (dt, 1 H, J = 9.5, 6.0 Hz), 4.43 (d, 1 H, J = 7.5, H-1), 4.95-5.05 (m, 2 H), 5.02 (dd, 1 H, J = 3.0, 10.5 Hz, H-3), 5.20 (dd, 1 H, J = 7.0, 10.5 Hz, H-2), 5.24 (br d, 1 H, J = 3.0 Hz, H-4), 5.80 (ddt, 1 H, J = 10.0, 17.0, 6.5 Hz).
12
Ichikawa Y.
Sim MM.
Wong CH.
J. Org. Chem.
1992,
57:
2943
13
Iversen T.
Bundle DR.
J. Org. Chem.
1981,
46:
5389
14
Carlsen PHJ.
Katzuki T.
Martin VS.
Sharpless KB.
J. Org. Chem.
1981,
46:
3936
15 Compound 20a: 1H NMR (CD3OD): δ = 0.99 (d, 3 H, J = 6.5 Hz, Me-6), 1.80 (m, 2 H), 1.85, 1.92, 2.04 (s, each 3 H, 3 × Ac), 2.30 (t, 2 H, J = 7.5 Hz), 3.33 (dt, 1 H, J = 10.0, 6.0 Hz), 3.60 (dt, 1 H, J = 10.0, 6.0 Hz), 4.01 (dd, 1 H, J = 9.0, 15.0 Hz, H-γ), 4.07 (br q, 1 H, J = 6.5 Hz, H-5), 4.14 (dd, 1 H, J = 3.0, 15.0 Hz, H-γ′), 4.16 (m, 1 H, H-β), 4.53 (d, 1 H, J = 5.5 Hz, H-α), 4.88 (d, 1 H, J = 3.5 Hz, H-1), 4.94 (dd, 1 H, J = 3.5, 11.0 Hz, H-2 or H-3), 5.05, 5.08 (d, each 1 H, AB type, J = 13.0 Hz, CH
2
Ph), 5.15 (dd, 1 H, J = 1.0, 3.5 Hz, H-4), 5.20 (dd, 1 H, J = 3.5, 11.0 Hz, H-2 or H-3), 7.25 (m, 5 H, Ph), 7.53 (s, 1 H, guanine H-8). FAB MS: Calcd for C32H40N6O13: 716.3. Found: 717.4.
16 Compound 20b: 1H NMR (CD3OD): δ = 1.06 (d, 3 H, J = 6.5 Hz, Me-6), 1.76 (m, 2 H), 1.84, 1.94, 2.04 (s, each 3 H, 3 × Ac), 2.25 (t, 2 H, J = 8.0 Hz), 3.45 (dt, 1 H, J = 10.0, 6.0 Hz), 3.74 (dt, 1 H, J = 10.0, 6.0 Hz), 3.81 (br q, 1 H, J = 6.5 Hz, H-5), 4.03 (dd, 1 H, J = 8.5, 14.0 Hz, H-γ), 4.16 (dd, 1 H, J = 4.0, 14.0 Hz, H-γ′), 4.19 (m, 1 H, H-β), 4.44 (d, 1 H, J = 7.5 Hz, H-1), 4.51 (d, 1 H, J = 5.5 Hz, H-α), 4.94 (dd, 1 H, J = 7.5, 10.5 Hz, H-2), 4.98 (dd, 1 H, J = 3.5, 10.5 Hz, H-3), 5.06, 5.09 (d, each 1 H, AB type, J = 12.5 Hz, CH
2
Ph), 5.11 (dd, 1 H, J = 1.0, 3.5 Hz, H-4), 7.30 (m, 5 H, Ph), 7.56 (s, 1 H, guanine H-8). FAB MS: Calcd for C32H40N6O13: 716.3. Found: 717.4.
17 Compound 2a: 1H NMR (D2O): δ = 1.01 (d, 3 H, J = 6.5 Hz, Me-6), 1.73 (m, 2 H), 2.24 (m, 2 H), 3.34 (m, 1 H), 3.54 (m, 1 H), 3.59 (dd, 1 H, J = 4.0, 10.0 Hz, H-2), 3.62 (br d, 1 H, J = 3.5 Hz, H-4), 3.70 (dd, 1 H, J = 3.5, 10.0 Hz, H-3), 3.88 (br q, 1 H, J = 6.5 Hz, H-5), 3.91 (dd, 1 H, J = 8.0, 14.5 Hz, H-γ), 4.04 (dd, 1 H, J = 6.0, 14.5 Hz, H-γ′), 4.18 (d, 1 H, J = 3.0 Hz, H-α), 4.37 (m, 1 H, H-β), 4.71 (d, 1 H, J = 4.0 Hz, H-1), 7.63 (s, 1 H, guanine H-8). MALDI-TOF MS: Calcd for C19H28N6O10 + Na+: 523.2. Found: 523.1.
18 Compound 2b: 1H NMR (D2O): δ = 1.01 (d, 1 H, J = 6.5 Hz, Me-6), 1.72 (m, 2 H), 2.23 (m, 2 H), 3.24 (dd, 1 H, J = 7.5, 10.0 Hz, H-2), 3.38 (dd, 1 H, J = 3.5, 10.0 Hz, H-3), 3.46 (dt, 1 H, J = 10.5, 6.5 Hz, A part of AB type), 3.48-3.55 (m, 2 H, H-4 and H-5), 3.72 (dt, 1 H, J = 10.5, 6.5 Hz, B part of AB type), 3.95-4.12 (m, 3 H, H-β and H2-γ), 4.13 (d, 1 H, J = 7.5 Hz, H-1), 4.19 (d, 1 H, J = 5.5 Hz, H-α), 7.62 (s, 1 H, guanine H-8). FAB MS: Calcd for C19H28N6O10 + Na+: 523.2. Found: 523.2.
19
Nishihara S.
Nakazato M.
Kudo T.
Kimura H.
Ando T.
Narimatsu H.
Biochem. Biophys. Res. Commun.
1993,
190:
42
20 The assay was performed in 50 mM cacodylate buffer (pH 6.8) containing 5 mM ATP, 10 mM l-Fuc, 25 mM MnCl2, 15 mM acceptor substrate, Galβ1-3GlcNAcβ1-3Galβ1-4Glc-2-aminobenzamide (for FUT 3) or Galβ1-4GlcNAcβ1-3Galβ1-4Glc-2-aminobenzamide (for FUT 6), 75 µM donor substrate GDP-Fuc, and 2a or 2b (0 mM for the positive control; 0.75 mM, and 7.5 mM respectively for the inhibitory assay). After incubation at 37 °C for 2 h in the presence of the fucosyltransferases (FUT 3 or FUT 6), the enzyme reaction was terminated by heating at 97 °C for 5 min followed by adding H2O. After centrifugation of the reaction mixture, in order to detect the fucosylated products and estimate their amounts, each supernatant was filtered and subjected to reverse-phase HPLC analysis on TSK-gel ODS-80Ts QA column (4.6 × 250 mm; Tosoh, Tokyo, Japan) and eluted with 20 mM ammonium acetate buffer (pH 4.0) containing 7% MeOH at flow rate of 1.0 mL/min at
50 °C, with monitoring by a fluorescence spectrophotometer (JASCO FP-920; Nihon Bunkoh, Tokyo, Japan).