References
1a For a recent review on ynamides and ynamines, see: Zificsak CA.
Mulder JA.
Hsung RP.
Rameshkumar C.
Wei L.-L.
Tetrahedron
2001,
57:
7575
1b See also: Mulder JA.
Kurtz KCM.
Hsung RP.
Synlett
2003,
1379
1c
Viehe HG.
Chemistry of Acetylenes
Marcel Dekker;
New York:
1969.
Chap. 12.
p.861-912
1d
Viehe HG.
Angew. Chem., Int. Ed. Engl.
1967,
6:
767
1e
Himbert G. In
Houben-Weyl, Methoden der organischen Chemie
Kropf H.
Schaumann E.
Georg Thieme Verlag;
Stuttgart:
1993.
p.3267-3443
2a
Witulski B.
Stengel T.
Angew. Chem. Int. Ed.
1998,
37:
489
2b
Brückner D.
Synlett
2000,
1402
2c
Stang PJ.
J. Org. Chem.
2003,
68:
2997
2d
Dunetz JR.
Danheiser RL.
Org. Lett.
2003,
5:
4011
2e
Frederick MO.
Mulder JA.
Tracey MR.
Hsung RP.
Huang J.
Kurtz KCM.
Shen L.
Douglas CJ.
J. Am. Chem. Soc.
2003,
125:
2368
3a
Rainier JD.
Imbriglio JE.
J. Org. Chem.
2000,
65:
7272
3b
Witulski B.
Stengel T.
Fernández-Hernández JM.
Chem. Commun.
2000,
1965
3c
Tanaka R.
Hirano S.
Urabe H.
Sato F.
Org. Lett.
2003,
5:
67
3d
Frederick MO.
Hsung RP.
Lambeth RH.
Mulder JA.
Tracey MR.
Org. Lett.
2003,
5:
2663
4a
Witulski B.
Gössmann M.
Chem. Commun.
1999,
1879
4b
Witulski B.
Gössmann M.
Synlett
2000,
1793
5a
Witulski B.
Stengel T.
Angew. Chem. Int. Ed.
1999,
38:
2426
5b
Witulski B.
Alayrac C.
Angew. Chem. Int. Ed.
2002,
41:
3281
6
Witulski B.
Lumtscher J.
Bergsträsser U.
Synlett
2003,
708
7a
Saito N.
Sato Y.
Mori M.
Org. Lett.
2002,
4:
803
7b
Huang J.
Xiong H.
Hsung RP.
Rameshkumar C.
Mulder JA.
Grebe TP.
Org. Lett.
2002,
4:
2417
8a
Varela JA.
Castedo L.
Saá C.
J. Am. Chem. Soc.
1998,
120:
12147
8b
Varela JA.
Castedo L.
Maestro M.
Mahía J.
Saá C.
Chem.-Eur. J.
2001,
7:
5203
As well as finding no precedent for the Glaser reaction of ynamides, we found only few ynamines dimerization:
9a
Ficini J.
Barbara C.
d’Angelo J.
Duréault A.
Bull. Soc. Chim. Fr.
1974,
1535
9b
Mayerle JJ.
Flandera MA.
Acta Crystallogr., Section B
1978,
34:
1374 ; no experimental details are given
10 For a recent review on acetylenic coupling, see: Siemsen P.
Livingston RC.
Diederich F.
Angew. Chem. Int. Ed.
2000,
39:
2632
11 Trimethylsilyl derivatives are interesting substrates that can also be prepared in a single step from the corresponding N-alkyltosylamides by reaction with hypervalent iodonium reagents, see: ref.
[5b]
12
Liu Q.
Burton DJ.
Tetrahedron Lett.
1997,
38:
4371
13 The dimerization of 2a performed without the co-catalyst CuI gave slow decomposition of starting material and performed only with CuI and Et3N gave a slow dimerization process.
14
Hay AS.
J. Org. Chem.
1962,
27:
3320
15
Typical Procedure for the Homocoupling of 1-Alkynyl Tosyl Amides: TMEDA (5 µL, 0.033 mmol) was added to a suspension of CuI (3 mg, 0.017 mmol) in dry acetone (4 mL) under O2 atmosphere, at r.t. After 15 min, a solution of 2a (45 mg, 0.177 mmol) in acetone (4 mL) was added and the mixture was vigorously stirred until TLC showed complete comsuption of the starting material (3 h). After removal of the solvent, the crude residue was purified by column chromatography on silica gel using a mixture of hexanes/EtOAc 1:3 as eluent, yielding 41 mg (91%) of 3a as white prisms, mp 157-159 °C (dec.). 1H NMR (250 MHz, CD3Cl): δ = 7.62-7.56 (m, 4 H, ArH), 7.36-7.26 (m, 10 H, ArH), 7.25-7.17 (m, 4 H, ArH), 2.44 (s, 6 H, 2 × CH3). 13C NMR + DEPT (62.83 MHz, CD3Cl): δ = 145.3 (2 × C), 138.2 (2 × C), 133.1 (2 × C), 129.7 (4 × CH), 129.2 (4 × CH), 128.7
(2 × CH), 128.1 (4 × CH), 126.4 (4 × CH), 75.7 (2 × C), 58.5 (2 × C), 21.7 (2 × CH3). MS: m/z (%) = 545 (29) [M+ - CH3], 369 (57), 322 (55), 278 (97), 247 (63), 218 (82), 139 (100), 91 (60). Anal. Calcd (%) for C30H24N2O4S2: C, 66.65; H, 4.47; N, 5.18; S, 11.86. Found: C, 66.21; H, 4.21; N, 5.27; S, 11.67.
16 Although N,N′-phenyl-buta-1,3-diyne-1,4-tosylamide(3a) decomposed during work-up under acidic conditions followed by removal of the solvent in a rotavapor, a pure sample of 3a was unaffected when dissolved in EtOAc or CHCl3 before mixing with HCl (5%) or NaOH (10%).
17
Valenti E.
Pericàs MA.
Serratosa F.
J. Am. Chem. Soc.
1990,
112:
7405
Ynamide 2b reacted much faster (in 0.5 h) than the non-nitrogenated acetylenes used by Mori and coworkers, which took 6-12 h. See:
18a
Ikegashira K.
Nishihara Y.
Hirabayashi K.
Mori A.
Hiyama T.
Chem. Commun.
1997,
1039
18b
Nishihara Y.
Ikegashira K.
Hirabayashi K.
Ando J.-I.
Mori A.
Hiyama T.
J. Org. Chem.
2000,
65:
1780
19
Greene TW.
Wuts PGM.
Protective Groups in Organic Synthesis
2nd ed.:
John Wiley and Sons;
New York:
1991.