Zusammenfassung
Transforming growth factor -β (TGF-β) ist ein Zytokin, das in großen Mengen von Glioblastomzellen gebildet und wegen seiner biologischen Effekte für zahlreiche Aspekte des malignen Phänotyps der Glioblastome verantwortlich gemacht wird. TGF-β besitzt autokrine und parakrine Wirkungen auf Glioblastomzellen vermutlich vor allem in Form gesteigerter Migration und Invasion. Zudem wird ein stimulierender Effekt auf die Angiogenese postuliert. Besonderes Interesse gilt jedoch den potenten inhibitorischen Wirkungen von TGF-β sowohl auf unspezifische als auch auf spezifische Immuneffektormechanismen. Diese Beobachtungen haben zu der Hypothese geführt, dass eine Antagonisierung von TGF-β ausreichen könnte, um eine wirksame Immunantwort gegen Glioblastome zu ermöglichen. Sowohl die Hemmung der TGF-β-Synthese durch stabile Expression eines Antisenseplasmids oder Pharmaka wie N-[3,4-Dimethoxycinnamoyl]-anthranilinsäure (Tranilast) als auch die Hemmung der TGF-β-prozessierenden furinähnlichen Proteasen als auch die Expression des TGF-β-bindenden Proteins Dekorin haben in Nagermodellen des Glioblastoms therapeutische Wirkung gezeigt. Bereits in der klinischen Evaluation im Rahmen einer randomisierten Studie befindet sich die lokale Therapie mit Antisense-Oligonukleotiden gegen TGF-β2 bei Gliomrezidiven. Zusammengefasst besteht die berechtigte Erwartung, dass TGF-β-antagonistische Therapiestrategien in absehbarer Zeit zu relevanten Fortschritten in der Glioblastomtherapie führen werden.
Abstract
Glioblastoma cells release high levels of the cytokine, transforming growth factor -β (TGF-β). The biological effects of TGF-β suggest that this molecule might play a central role in the malignant phenotype of glioblastomas. Autocrine and paracrine effects of TGF-β include the promotion of glioma cell migration and invasion. TGF-β may also stimulate angiogenesis. The potent inhibitory effects of TGF-β on unspecific and specific immune effector mechanisms have received special attention in the context of glioma biology. Altogether these observations have led to the hypothesis that antagonizing TGF-β might suffice to allow for an efficient immune response against glioblastomas. Inhibition of TGF-β synthesis by stable expression of an antisense plasmid or by drugs such as N-[3,4-dimethoxycinnamoyl]-anthranilic acid (Tranilast), or inhibition of TGF-β-processing furin-like proteases, or expression of the TGF-β-binding protein, decorin, have all shown therapeutic effects in rodent glioma models. The local application of TGF-β2 antisense oligonucleotides is currently evaluated in a randomized clinical trial for recurrent malignant glioma. There is thus a strong rationale to expect a major progress from TGF-β-antagonistic treatment strategies for glioblastoma in the near future.
Literatur
1
Chang H, Brown C W, Matzuk M M.
Genetic analysis of the mammalian transforming growth factor-β superfamily.
Endocr Rev.
2002;
23
787-823
2
Shull M M, Ormsby I, Kier A B. et al .
Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease.
Nature.
1992;
359
693-699
3
Kulkarni A B, Huh C G, Becker D. et al .
Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death.
Proc Natl Acad Sci USA.
1993;
90
770-774
4
Kaartinen V, Voncken J W, Shuler C. et al .
Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction.
Nat Genet.
1995;
11
415-421
5
Proetzel G, Pawlowski S A, Wiles M V. et al .
Transforming growth factor-beta 3 is required for secondary palate fusion.
Nat Genet.
1995;
11
409-414
6
Sanford L P, Ormsby I, Gittenberger-de Groot A C. et al .
TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGF beta knockout phenotypes.
Development.
1997;
124
2659-2670
7
Thomas G.
Furin at the cutting edge: from protein traffic to embryogenesis and disease.
Nat Rev Mol Cell Biol.
2002;
3
753-766
8
Shi Y, Massagué J.
Mechanisms of TGF-β signaling from cell membrane to the nucleus.
Cell.
2003;
113
685-700
9
Brown C B, Boyer A S, Runyan R B, Barnett J V.
Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart.
Science.
1999;
283
2080-2082
10
Fontana A, Hengartner H, Tribolet N de, Weber E.
Glioblastoma cells release interleukin 1 and factors inhibiting interleukin 2-mediated effects.
J Immunol.
1984;
132
1837-1844
11
Weller M, Fontana A.
The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-β, T cell apoptosis, and the immune privilege of the brain.
Brain Res Rev.
1995;
21
128-151
12
Weller M, Constam D, Malipiero U, Fontana A.
Transforming growth factor-β2 induces apoptosis of murine T cell clones without down-regulating bcl-2 mRNA expression.
Eur J Immunol.
1994;
24
1293-1300
13
Gorelik L, Flavell R A.
Transforming growth factor-β in T-cell biology.
Nat Rev Immunol.
2002;
2
46-53
14
Kobie J J, Wu R S, Kurt R A. et al .
Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines.
Cancer Res.
2003;
63
1860-1864
15
Lee Y J, Han Y, Lu H T. et al .
TGF-beta suppresses IFN-gamma induction of class II MHC gene expression by inhibiting class II transactivator messenger RNA expression.
J Immunol.
1997;
158
2065-2075
16
Fabry Z, Topham D J, Fee D. et al .
TGF-beta 2 decreases migration of lymphocytes in vitro and homing of cells into the central nervous system in vivo.
J Immunol.
1995;
155
325-332
17
Won J, Kim H, Park E J. et al .
Tumorigenicity of mouse thymoma is suppressed by soluble type II transforming growth factor β receptor therapy.
Cancer Res.
1999;
59
1273-1277
18
Bandyopadhyay A, Zhu Y, Cibull M L. et al .
A soluble transforming growth factor β type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells.
Cancer Res.
1999;
59
5041-5046
19
Gorelik L, Flavell R A.
Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells.
Nat Med.
2001;
7
1118-1122
20
Bollard C M, Rössig C, Calonge M J. et al .
Adapting a transforming growth factor β-related tumor protection strategy to enhance antitumor immunity.
Blood.
2002;
99
3179-3187
21
McEarchern J A, Kobie J J, Mack V. et al .
Invasion and metastasis of a mammary tumor involves TGF-β signaling.
Int J Cancer.
2001;
91
76-82
22
Muraoka R S, Dumont N, Ritter C A. et al .
Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases.
J Clin Invest.
2002;
109
1551-1559
23
Yang Y, Dukhanina O, Tang B. et al .
Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects.
J Clin Invest.
2002;
109
1607-1615
24
Jensen R L.
Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a review.
Surg Neurol.
1998;
49
189-195
25
Jennings M T, Maciunas R J, Carver R. et al .
TGF beta 1 and TGF beta 2 are potential growth regulators for low-grade and malignant gliomas in vitro: evidence in support of an autocrine hypothesis.
Int J Cancer.
1991;
49
129-139
26
Jachimczak P, Hessdorfer B, Fabel-Schulte K. et al .
Transforming growth factor-beta-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides.
Int J Cancer.
1996;
65
332-337
27
Ständer M, Naumann U, Dumitrescu L. et al .
Decorin gene-transfer mediated suppression of TGF-β synthesis abrogates experimental malignant glioma growth in vivo.
Gene Therapy.
1998;
5
1187-1194
28
Leitlein J, Aulwurm S, Waltereit R. et al .
Processing of immunosuppressive pro-TGF-β1,2 by human glioblastoma cells involves cytoplasmic and secreted furin-like proteases.
J Immunol.
2001;
166
7238-7243
29
Platten M, Wick W, Wild-Bode C. et al .
Transforming growth factors β1 (TGF-β1 ) and TGF-β2 promote glioma cell migration via up-regulation of αv β3 integrin expression.
Biochem Biophys Res Commun.
2000;
268
607-611
30
Wick W, Platten M, Weller M.
Glioma cell invasion: regulation of metalloproteinase activity by TGF-β.
J Neuro-Oncol.
2001;
53
177-185
31
Wick W, Grimmel C, Wild-Bode C. et al .
Ezrin-dependent promotion of glioma cell clonogenicity, motility and invasion mediated by BCL-2 and TGF-β2 .
J Neurosci.
2001;
21
3360-3368
32
Jachimczak P, Bogdahn U, Schneider J. et al .
The effect of transforming growth factor-beta 2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma.
J Neurosurg.
1993;
78
944-951
33
Fakhrai H, Dorigo O, Shawler D L. et al .
Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy.
Proc Natl Acad Sci USA.
1996;
93
2909-2914
34
Border W A, Noble N A, Yamamoto T. et al .
Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease.
Nature.
1992;
360
361-364
35
Münz C, Naumann U, Grimmel C. et al .
TGF-β-independent induction of immunogenicity by decorin gene transfer in human malignant glioma cells?.
Eur J Immunol.
1999;
29
1032-1040
36
Platten M, Wild-Bode C, Wick W. et al .
N-[3,4-dimethoxycinnamoyl]-anthranilic acid (tranilast) inhibits TGF-β release and reduces migration and invasiveness of human malignant glioma cells.
Int J Cancer.
2001;
93
53-61
37
Mercapide J, Lopez De Cicco R, Bassi D E. et al .
Inhibition of furin-mediated processing results in suppression of astrocytoma cell growth and invasiveness.
Clin Cancer Res.
2002;
8
1740-1746
Prof. Dr. med. Michael Weller
Abteilung Allgemeine Neurologie · Hertie-Institut für Klinische Hirnforschung · Zentrum Neurologie Universitätsklinikum Tübingen
Hoppe-Seyler-Straße 3
72076 Tübingen
eMail: michael.weller@uni-tuebingen.de