Aktuelle Neurologie 2004; 31(4): 170-179
DOI: 10.1055/s-2003-814930
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Motorische und kognitive Störungen bei zerebellären Erkrankungen

Motor and Cognitive Disorders in Cerebellar DiseaseD.  Timmann1 , M.  Maschke1 , F.  P.  Kolb2
  • 1Neurologische Klinik, Universität Duisburg-Essen und
  • 2Institut für Physiologie, Ludwig-Maximilians-Universität München
Further Information

Publication History

Publication Date:
07 May 2004 (online)

Zusammenfassung

Die zerebelläre Ataxie kann sich als Stand-, Gang- und Rumpfataxie, als Extremitätenataxie, Dysarthrie und in einer gestörten Okulomotorik manifestieren. Läsionen des L. flocculonodularis und des kaudalen Vermis gehen mit einer Rumpfataxie und komplex gestörten Okulomotorik einher, des rostralen Vermis mit einer Stand- und Gangataxie und der Kleinhirnhemisphären mit einer ipsilateralen Extremitätenataxie. Dysarthrie tritt bei Läsionen oberer paravermaler Kleinhirnanteile auf. Die zerebelläre Ataxie ist Ausdruck einer gestörten Koordination von Bewegungen, die auf einer fehlerhaften Zeitabstimmung (Timing) und Kontrolle der Kräfte oder Drehmomente an und zwischen den Gelenken beruht. Vermutlich wird das klinische Bild zusätzlich durch gestörte motorische Lernvorgänge bestimmt, insbesondere einer gestörten Adaptation und Automatisierung von Bewegungen. Neuere anatomische Befunde, Untersuchungen mit bildgebenden Verfahren und Läsionsstudien haben wesentlich zu der Hypothese beigetragen, dass das Kleinhirn auch eine Rolle bei kognitiven Funktionen spielen könnte. Die rechte posterolaterale Hemisphäre soll für Sprachaufgaben, die linke für räumlich-visuelle Aufgaben und der Vermis für Affekt und Verhalten von Bedeutung sein. Es bleibt abzuwarten, inwieweit kognitive Dysfunktionen ins klinische Spektrum von Kleinhirnerkrankungen aufzunehmen sind. Deutliche kognitive Defizite gehören jedenfalls nicht zum typischen klinischen Bild.

Abstract

Clinical signs of cerebellar ataxia include ataxia of stance and gait, truncal and limb ataxia as well as dysarthria and oculomotor signs. Lesions of the flocculonodular lobe and caudal vermis are followed by truncal ataxia and oculomotor signs, lesions of the rostral vermis by ataxia of stance and gait, and lesions of cerebellar hemisphere by ipsilateral limb ataxia. Lesions of the superior paravermal cerebellum are accompanied by dysarthria. Clinical signs of ataxia are a consequence of cerebellar incoordination of movement which is caused by disordered timing and control of forces or torques at and across joints. Part of the clinical picture of cerebellar ataxia is likely explained also by disorders in motor learning, in particular in adaptation and lack of automatization of movement. More recent anatomical data and findings in human lesion and brain imaging studies suggest a possible additional role of the cerebellum in non-motor functions, i. e. cognition. The right posterolateral cerebellar hemisphere is thought to be involved in language, the left posterolateral hemisphere in visuomotor tasks and the vermis in affect and behavior. At present, it is unclear whether cognitive dysfunction should be considered part of the clinical picture of cerebellar disease. Cerebellar disorders, in any case, do not present with prominent cognitive dysfunction.

Literatur

  • 1 Schmahmann J D. The Cerebellum and Cognition. Int Rev Neurobiol, Vol. 41. San Diego; Academic Press 1997
  • 2 Babinski J. De l'asynergie cérébelleuse.  Rev Neurol. 1899;  7 806-816
  • 3 Holmes G. The cerebellum of man.  Brain. 1939;  62 1-30
  • 4 Timmann D, Diener H C. Coordination and ataxia. In: Goetz CG, Pappert EJ (eds) Textbook of Clinical Neurology. 2nd edition. Orlando; FL: Sanders 2003: 299-315
  • 5 Deuschl G, Bain P. Klassifikation des Tremors.  Akt Neurol. 2002;  29 273-281
  • 6 Jansen J, Brodal A. Experimental studies on the intrinsic fibers of the cerebellum. II. The cortico-nuclear projection.  J Comp Neurol. 1940;  73 267-321
  • 7 Bastian A, Thach W T. Structure and function of the cerebellum. In: Manto MU, Pandolfo M (eds) The Cerebellum and its Disorders. New York; Cambridge University Press 2002: 49-68
  • 8 Lechtenberg R, Gilman S. Speech disorders in cerebellar disease.  Ann Neurol. 1978;  3 285-290
  • 9 Thömke F. Erworbene Nystagmen bei Hirnstamm- und Kleinhirnschädigungen. Klinische Erscheinungsformen und topodiagnostische Bedeutung.  Akt Neurol. 2002;  29 499-510
  • 10 Straube A, Büttner U. Zerebelläre Augenbewegungsstörungen. In: Huber A, Kömpf D (Hrsg) Klinische Neuroophthalmologie. Stuttgart; Thieme 1998: 566-570
  • 11 Grodd W, Hülsmann E, Lotze M. et al . Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization.  Hum Brain Mapp. 2001;  13 55-73
  • 12 Voogd J, Glickstein M. The anatomy of the cerebellum.  Trends Neurosci. 1998;  21 370-375
  • 13 Barlow J S. The Cerebellum and Adaptive Control. New York; Cambridge University Press 2002
  • 14 Bower J M, Parsons L M. Rethinking the „lesser brain”.  Sci Am. 2003;  289 50-57
  • 15 Highstein S M, Thach W T. The Cerebellum. Recent Developments in Cerebellar Research. New York; The New York Academy of Sciences 2002
  • 16 Hore J, Wild B, Diener H C. Cerebellar dysmetria at the elbow, wrist and fingers.  J Neurophysiol. 1991;  65 563-571
  • 17 Timmann D, Watts S, Hore J. Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws.  J Neurophysiol. 1999;  82 103-114
  • 18 Ivry R B, Spencer R M, Zelaznik H N. et al . The cerebellum and event timing.  Ann N Y Acad Sci. 2002;  978 302-317
  • 19 Ackermann H, Gräber S, Hertrich I. et al . Categorial speech perception in cerebellar disorders.  Brain Lang. 1997;  60 323-331
  • 20 Heck D, Sultan F. Das unterschätzte Kleinhirn.  Spektrum der Wissenschaft. 2001;  10 36-44
  • 21 Thier P, Dicke P W, Haas R. et al . Encoding of movement time by populations of cerebellar Purkinje cells.  Nature. 2000;  405 72-76
  • 22 Bastian A J, Martin T A, Keating J G. et al . Cerebellar ataxia: abnormal control of interaction torques across multiple joints.  J Neurophysiol. 1996;  76 492-509
  • 23 Topka H, Konczak J, Schneider K. et al . Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics.  Exp Brain Res. 1998;  119 493-503
  • 24 Morton S M, Bastian A J. Does cerebellar damage impair control of interaction torques during walking over obstacles? Program No. 666.1, 2002 Abstract Viewer/Itinerary Planner. Washington, DC; Society for Neuroscience 2002 online
  • 25 Morton S M, Bastian A J. Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia.  J Neurophysiol. 2003;  89 1844-1856
  • 26 Stolze H, Klebe S, Petersen G. et al . Typical features of cerebellar ataxic gait.  J Neurol Neurosurg Psychiatry. 2002;  73 310-312
  • 27 Ito M. The Cerebellum and Neural Control. New York; Raven Press 1984
  • 28 Mier H van. Human learning. In: Toga AW, Mazziotta JC (eds) Brain Mapping: The Systems. San Diego; Academic Press 2000: 605-621
  • 29 Doyon J, Penhune V, Ungerleider L G. Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning.  Neuropsychologia. 2003;  41 252-262
  • 30 Woodruff-Pak D S, Steinmetz J E. Eyeblink Classical Conditioning: Volume II Animal Models. Norwell, MA; Kluwer Academic Publishers 2000
  • 31 Gerwig M, Dimitrova A, Kolb F P. et al . Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions.  Brain. 2003;  126 71-94
  • 32 Carey M, Lisberger S. Embarrassed, but not depressed: eye opening lessons for cerebellar learning.  Neuron. 2002;  35 223-226
  • 33 Squire L R, Zola S M. Structure and function of declarative and nondeclarative memory systems.  Proc Natl Acad Sci USA. 1996;  93 13515-13522
  • 34 Maschke M, Gomez C M, Ebner T J. et al .Hereditary cerebellar ataxia progressively impairs force-adaptation during goal-directed arm movements. J Neurophysiol 2003 in press Seidler R D Purushotham A Kim S G et al Cerebellum activation associated with performance change but not motor learning. Science 2002 296 2043 2046 Leiner H C Leiner A L Dow R S Cognitive and language functions of the human cerebellum. Trends Neurosci 1993 16 444 447 Thach W T What is the role of the cerebellum in motor learning and cognition? Trends Cognit Neurosci 1998 2 331 337 Scott R B Stoodley C J Anslow P et al Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol 2001 43 685 691 Gebhart A L Petersen S E Thach W T Role of the posterolateral cerebellum in language. Ann N Y Acad Sci 2002 978 318 333 Andreasen N C Paradiso S O'Leary D S „Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull 1998 24 203 218 Schmahmann J D The role of the cerebellum in affect and psychosis. J Neuroling 2000 13 189 214 Ackermann H Daum I Kleinhirn und Kognition - psychopathologische, neuropsychologische und neuroradiologische Befunde. Fortschr Neurol Psychiatr 1995 63 30 37 Glickstein M Motor skills but not cognitive tasks. Trends Neurosci 1993 16 450 451 Middleton F A Strick P L Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 2001 21 700 712 Glickstein M How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci 2000 23 613 617 Ungerleider L G Mishkin M Two cortical visual systems. In: Goodale MA, Mansfield JW (eds) Analysis of Visual Behavior. Cambridge, MA MIT Press 1982 459 486 Cabeza R Nyberg L Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cognit Neurosci 2000 12 1 47 Bischoff-Grethe A Ivry R B Grafton S T Cerebellar involvement in response reassignment rather than attention. J Neurosci 2002 22 546 553 Ackermann H Wildgruber D Daum I et al Does the cerebellum contribute to cognitive aspects of speech production? A functional magnetic resonance imaging (fMRI) study in humans. Neurosci Lett 1998 247 187 190 Petersen S Fox P Posner M et al Positron emission tomographic studies of the processing of single words. J Cognit Neurosci 1989 1 153 170 Levisohn L Cronin-Golomb A Schmahmann J D Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain 2000 123 1041 1050 Riva D Giorgi C The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain 2000 123 1051 1061 Steinlin M Imfeld S Zulauf P et al Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain 2003, Epub ahead of print Neau J P Arroyo-Anllo E Bonnaud V et al Neuropsychological disturbances in cerebellar infarcts. Acta Neurol Scand 2000 102 363 370 Malm J Kristensen B Karlsson T et al Cognitive impairment in young adults with infratentorial infarcts. Neurology 1998 51 433 440 Fiez J A Petersen S E Cheney M K et al Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain 1992 115 155 178 Helmuth L L Ivry R B Shimizu N Preserved performance by cerebellar patients on tests of word generation, discrimination learning, and attention. Learn Mem 1997 3 456 474 Richter S Kaiser O Hein-Kropp C et al Preserved verb generation in patients with cerebellar atrophy. Neuropsychologia submitted Courchesne E Allen G Prediction and preparation, fundamental functions of the cerebellum. Learn Mem 1997 4 1 35 Ravizza S M Ivry R B Comparison of the basal ganglia and cerebellum in shifting attention. J Cogn Neurosci 2001 13 285 297 Schoch B Gorißen B Richter S et al Do children with focal cerebellar lesions show deficits in shifting attention? Neuropsychologia submitted Maschke M Gomez C M Tuite P J et al Dysfunction of the basal ganglia, but not the cerebellum, impairs kinaesthesia. Brain 2003 126 2312 2322 Bracke-Tolkmitt R Linden A Canavan A GM et al The cerebellum contributes to mental skills. Behav Neurol 1989 103 442 446 Timmann D Drepper J Maschke M et al Motor deficits cannot explain impaired cognitive associative learning in cerebellar patients. Neuropsychologia 2002 40 788 800 Bürk K Globas C Bosch S et al Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol 2003 250 207 211 Haines D E Dietrichs E Mihailoff G A et al The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol 1997 41 83 107 Reis D J Golanov E V Autonomic and vasomotor regulation. Int Rev Neurobiol 1997 41 121 149 Critchley H D Corfield D R Chandler M P et al Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J Physiol 2000 523 259 270 Parsons L M Egan G Liotti M et al Neuroimaging evidence implicating cerebellum in the experience of hypercapnia and hunger for air. Proc Natl Acad Sci USA 2001 98 2041 2046 Maschke M Drepper J Kindsvater K et al Fear conditioned potentiation of the acoustic blink reflex in patients with cerebellar lesions. J Neurol Neurosurg Psychiatry 2000 68 358 364 Maschke M Schugens M Kindsvater K et al Fear conditioned changes of heart rate in patients with medial cerebellar lesions. J Neurol Neurosurg Psychiatry 2002 72 116 118 Frings M Maschke M Erichsen M et al Involvement of the human cerebellum in fear conditioned potentiation of the acoustic startle response: a PET study. Neuroreport 2002 13 1275 1278

Prof. Dr. med. Dagmar Timmann

Neurologische Klinik · Universität Duisburg-Essen

Hufelandstraße 55

45138 Essen

Email: Dagmar.Timmann@uni-essen.de