Zusammenfassung
Ziel: Im Vergleich zur Einschicht-Spiral-CT (ES-CT) hat die Mehrschicht-CT (MS-CT) eine deutlich höhere Ortsauflösung. Ziel dieser Studie war es daher zu prüfen, ob der Zugewinn an Auflösung Vorteile für die Knochenstrukturanalyse in der Osteoporosediagnostik bietet. Material und Methoden: 20 zylinderförmige, trabekuläre Knochenproben (Durchmesser 12 mm, Länge 15 - 20 mm) wurden humanen thorakalen Wirbelsäulenpräparaten (BWK 8) entnommen. Mittels ES- und MS-CT wurden hochauflösende Schnittbilder angefertigt und histomorphometrische Strukturparameter errechnet. Zusätzlich wurde die Knochenmineraldichte (BMD) mittels quantitativer CT bestimmt. Als Goldstandard dienten analoge Strukturparameter aus der Mikro-CT und die biomechanisch bestimmte Versagensspannung (VS) der Proben. Ergebnisse: Die Parameter Knochenvolumenfraktion und trabekuläre Separation aus dem ES- und MS-CT korrelierten hoch mit den entsprechenden Strukturparametern aus der Mikro-CT (bis r2 = 0,84; p < 0,01) und mit der VS (bis r2 = 0,81; p < 0,01). Die höchste Korrelation mit der VS ergab sich für den Parameter trabekuläre Anzahl aus dem MS-CT (r2 = 0,85, p < 0,01). Diese war signifikant (p < 0,05) höher als die Korrelation zwischen VS und BMD (r2 = 0,49). Schlussfolgerung: Mit der MS-CT gemessene Strukturparameter des trabekulären Knochens zeigen hohe Korrelationen mit der Mikro-CT, so dass eine klinische Charakterisierung der trabekulären Struktur möglich erscheint. Mittels MS-CT akquirierte Strukturparameter waren in dieser experimentellen Studie für die Vorhersage der biomechanischen Festigkeit am besten geeignet.
Abstract
Objectives: MS-CT (Multislice-Spiral-CT) has a higher spatial resolution compared to the SS-CT (Singleslice-CT). The purpose of this study was to investigate, if the higher spatial resolution of the MS-CT has advantages for structural analyses in the assessment of osteoporosis. Material and Methods: 20 cylindrical trabecular bone specimens (diameter 12 mm, length 15 - 20 mm) were harvested from formalin-fixed human thoracic spines. All specimens were examined by Micro-CT and quantitative, histomorphologic parameters were determined. Analogous structural parameters were calculated from the high-resolution images acquired by both MS- and SS-CT. Additionally, the BMD (bone mineral density) was measured by QCT (quantitative CT). The maximum compressive strength (MCS) was determined in a biomechanical test. The structural parameters were correlated with the histomorphologic parameters and with the MCS. Results: The parameters bone fraction and trabecular separation correlated significantly in both MS- and SS-CT with the analogous parameters from Micro-CT (r2 = 0.84, p < 0.01) and the MCS (r2 = 0.81, p < 0.01). The highest correlation with the MCS was calculated using the trabecular number measured by MS-CT in the superior region near the endplate of the vertebra with the high-resolution kernel U90 u (r2 = 0.85, p < 0.01). This correlation was significantly higher than the correlation between MCS and BMD (r2 = 0.49, p < 0.01). Conclusion: Micro-CT- and MS-CT-determined structural parameters of the trabecular bone showed significant, high correlations. Thus, a characterisation of the trabecular structure seems to be possible. The biomechanical stability of the bone can also be predicted well. The structural parameters acquired by MS-CT show higher correlations with the MCS than the BMD or structural parameters determined by SS-CT do. In this study MS-CT was best suited to predict biomechanical strength of trabecular bone.
Key words
Computed tomography (CT) - multi-detector row - bones - spine - osteoporosis
Literatur
1
Götte S, Dittmar K.
Epidemiologie und Kosten der Osteoporose.
Orthopäde.
2001;
30 (7)
402-404
2
NIH Consensus Development Panel.
Osteoporosis prevention, diagnosis, and therapy.
JAMA.
2001;
285 (6)
785-795
3
Ross P, Davis J, Wasnich R. et al .
A critical review of bone mass and the risk of fractures in osteoporosis.
Cacif Int Tissue.
1990;
46
149-161
4
Cortet B, Dubois P, Boutry N. et al .
Does high-resolution computed tomography image analysis of the distal radius provide information independent of bone mass?.
J Clin Densitom.
2000;
3 (4)
339-351
5
Gordon C L, Lang T F, Augat P. et al .
Image-based assessment of spinal trabecular bone structure from high-resolution CT images.
Osteoporos Int.
1998;
8 (4)
317-325
6
Link T M, Majumdar S, Lin J C. et al .
Assessment of trabecular structure using high resolution CT images and texture analysis.
J Comput Assist Tomogr.
1998;
22 (l)
15-24
7
Waldt S, Meier N, Renger B. et al .
Strukturanalyse hochauflösender Computertomogramme als ergänzendes Verfahren in der Osteoporosediagnostik: In vitro Untersuchungen an Wirbelsäulensegmenten.
Fortschr Röntgenstr.
1999;
171
136-142
8
Engelke K, Karolczak M, Lutz A. et al .
Mikro-CT-Technologie und Applikationen zur Erfassung von Knochenarchitektur.
Radiologe.
1999;
39 (3)
203-212
9
Muller R, Hildebrand T, Ruegsegger P.
Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone.
Phys Med Biol.
1994;
39 (1)
145-164
10
Ruegsegger P, Koller B, Muller R.
A microtomographic system for the nondestructive evaluation of bone architecture.
Calcif Tissue Int.
1996;
58 (l)
24-29
11
Parfitt A M, Drezner M K, Glorieux F H. et al .
Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee.
J Bone Miner Res.
1987;
2 (6)
595-610
12
Link T M, Majumdar S, Augat P. et al .
In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients.
J Bone Miner Res.
1998;
13 (7)
1175-1182
13
Issever A S, Vieth V, Letter A. et al .
Local differences in the trabecular bone structure of the proximal femur depicted with high-spatial- resolution MR imaging and multisection CT.
Acad Radiol.
2002;
9 (12)
1395-1406
14
Ebbesen E N, Thomsen J S, Beck-Nielsen H. et al .
Age- and gender-related differences in vertebral bone mass, density, and strength.
J Bone Miner Res.
1999;
14 (8)
1394-1403
15
Gluer C C, Blake G, Lu Y. et al .
Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques.
Osteoporos Int.
1995;
5 (4)
262-270
16
Wedegärtner U, Thurmann H, Schmidt R. et al .
Strahlenexposition bei der Mehrschicht-Spiral-CT (MSCT) von Kopf, Mittelgesicht und Beckenskelett: Vergleich mit der Einzeilen-Spiral-CT (SSCT).
Fortschr Rontgenstr.
2003;
175
234-238
17
Kothari M, Keaveny T M, Lin J C. et al .
Impact of spatial resolution on the prediction of trabecular architecture parameters.
Bone.
1998;
22 (5)
437-443
18
Link T M, Vieth V, Stehling C. et al .
High-resolution MRI vs multislice spiral CT: Which technique depicts the trabecular bone structure best?.
Eur Radiol.
2003;
13 (4)
663-671
19
Majumdar S, Newitt D, Mathur A. et al .
Magnetic resonance imaging of trabecular bone structure in the distal radius: Relationship with X-ray tomographic microscopy and biomechanics.
Osteoporos Int.
1996;
6
376-385
20
Cendre E, Mitton D, Roux J P. et al .
High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics.
Osteoporos Int.
1999;
10 (5)
353-360
21
Block J, Smith R, Glüer C C. et al .
Models of spinal trabecular bone loss as determined by quantitative computed tomography.
J Bone Miner Res.
1989;
4
249-257
22
Hayes W, Piazza S, Zysset P.
Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography.
Radiologic Clinics of North America.
1991;
29
1-18
23
Parfitt A.
Trabecular bone architecture in the pathogenesis and prevention of fracture.
Am JMed.
1987;
82
68-72
24
Banse X, Devogelaer J P, Munting E. et al .
Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body.
Bone.
2001;
28 (5)
563-571
25
Thomsen J S, Ebbesen E N, Mosekilde L.
Zone-dependent changes in human vertebral trabecular bone: clinical implications.
Bone.
2002;
30 (5)
664-669
26
van der Meulen M C, Jepsen K J, Mikic B.
Understanding bone strength: size isn’t everything.
Bone.
2001;
29 (2)
101-104
27 Satoris D. Osteoporosis. Resnick D Diagnosis of bone and joint disorders Philadelphia; Saunders 1996
28
Mosekilde L, Mosekilde L.
Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength.
Bone.
1986;
7 (3)
207-212
29
McBroom R J, Hayes W C, Edwards W T. et al .
Prediction of vertebral body compressive fracture using quantitative computed tomography.
J Bone Joint Surg Am.
1985;
67 (8)
1206-1214
Prof. Dr. med. Thomas M. Link
Department of Radiology at UCSF
400 Parnassus Ave
Box 0628
San Francisco, CA 94143, USA
Email: tmlink@radiology.ucsf.com