Zusammenfassung
Ziel: Korrelation der mit kardialer Mehrschicht-Spiral-CT (MSCT) bestimmten Kalzifikationen
der Aortenklappe mit dem Schweregrad der Aortenklappenstenose (AS). Material und Methode: 41 konsekutive Patienten (17 Männer, 24 Frauen, Durchschnittsalter 71,0 ± 7,9 Jahre)
mit anamnestisch bekannter AS und einer Klappenöffnungsfläche ≤ 2 cm2 wurden mittels nativer 4-Schicht-MSCT mit retrospektivem EKG-Gating und Echokardiographie
untersucht. Kalzifikationen der Aortenklappe wurden mit Agatston-Score und Massenscore
quantifiziert. Echokardiographisch bestimmte Klappenöffnungsfläche (EKÖF) und Schweregrad
der AS wurden mit dem Ausmaß der Klappenkalzifikationen verglichen. Ergebnisse: Agatston-Score und Massenscore waren bei einer hochgradigen AS signifikant höher
(p < 0,001) als bei geringer oder mittelgradiger AS. Bei hochgradigen AS betrug der
mittlere Agatston-Score 4125,5 ± 1168,9 (Massenscore: 904,1 ± 263,3) während die korrespondierenden
Werte für mittelgradige AS bei 1596,3 ± 987,0 (319,1 ± 208,3) und für geringgradige
AS bei 785,9 ± 390,1 (149,1 ± 90,2) lagen. Pearson’s Korrelationskoeffizient war r
= - 0,75 für den Agatston-Score und r = - 0,72 für den Massenscore. Die Übereinstimmung
mit dem Schweregrad einer AS war mit κ = 0,6091 bzw. κ = 0,6985 moderat. Schlussfolgerung: Die kardiale MSCT hat das Potenzial, hochgradige AS von gering- oder mittelgradigen
AS zu unterscheiden. Ausgeprägte Kalzifikationen der Aortenklappensegel mit einem
Agatston-Score ≥ 2824 (Massenscore ≥ 611) weisen auf eine hochgradige AS hin und können
als Indikation für eine weitergehende Diagnostik angesehen werden.
Abstract
Objective: To non-invasively assess the severity of aortic valve stenosis (AS) by the determination
of aortic valve calcification (AVC) using multislice spiral computed tomography (MSCT).
Materials and Methods: Forty-one consecutive patients (17 male, 24 female, mean age 71.0 ± 7.9 years) with
a history of AS and an aortic valve area ≤ 2 cm2 underwent retrospectively ECG-gated 4-slice MSCT and echocardiography. The AVCs were
quantitatively assessed using the score described by Agatston as well as by calculating
the calcium mass. The echocardiographically determined aortic valve area (AVA) and
the severity of AS according to the ACC/AHA guidelines were compared to the degree
of aortic valve calcifications. Pearson’s correlation coefficient, cut-off values,
kappa test and F-test with post hoc Bonferroni t-tests were calculated. Results: Calcium scores were significantly higher in patients with severe AS, when compared
to mild or moderate AS (p < 0.001). In patients suffering from severe AS, the mean
Agatston score was 4125.5 ± 1168.9 (calcium mass 904.1 ± 263.3) while in patients
with moderate and mild AS the corresponding values were 1596.3 ± 987.0 (319.1 ± 208.3)
and 785.9 ± 390.1 (149.1 ± 90.2), respectively. Pearson’s correlation coefficients
were r = - 0.75 for the Agatston score and r = - 0.72 for the calcium mass. There
was a moderate agreement between severity of AS according to the ACC/AHA guidelines
and the degree of AS determined from AVC scores with κ = 0.6091 and κ = 0.6985, respectively.
Conclusion: Severe AS may be differentiated from moderate or mild AS using cardiac MSCT. Extensive
calcifications of the aortic valve presenting with an Agatston-Score ≥ 2824 (calcium
mass ≥ 611) indicate a severe AS and should be taken as an indication for further
diagnostic workup.
Key words
Computed Tomography (CT) - multidetector row - heart, CT - heart, US - heart, calcification
- aortic valve
Literatur
1
Stewart B F, Siscovick D, Lind B K. et al .
Clinical factors associated with calcific aortic valve disease. Cardiovascular Health
Study.
J Am Coll Cardiol.
1997;
29
630-634
2
Kaden J J, Freyer S, Weisser G. et al .
Correlation of degree of aortic valve stenosis by doppler echocardiogram to quantify
of calcium in the valve by electron beam tomography.
J Am Cardiol.
2002;
90
554-557
3
Cowell S J, Newby D E, Burton J. et al .
Aortic valve calcification on Computed Tomography predicts the severity o aortic stenosis.
Clin Radiol.
2003;
58
712-716
4
Shavelle D M, Budoff M J, Buljubasic N. et al .
Usefulness of aortic valve calcium scores by electron beam computed tomography as
a marker for aortic stenosis.
Am J Cardiol.
2003;
92
349-353
5
Kizer J R, Gefter W B, deLemos A S. et al .
Electron beam computed tomography for the quantification of aortic valvular calcification.
J Heart Valve Dis.
2001;
10
361-366
6
Budoff M J, Mao S, Takasu J. et al .
Reproducibility of electron-beam CT measures of aortic valve calcification.
Acad Radiol.
2002;
9
1122-1127
7
Becker C R, Jakobs T F, Aydemir S. et al .
Helical and single-slice conventional CT versus electron beam CT for the quantification
of coronary artery calcification.
AJR Am J Roentgenol.
2000;
174
543-547
8
Morgan-Hughes G J, Owens P E, Roobottom C A. et al .
Three dimensional volume quantification of aortic valve calcification using multislice
computed tomography.
Heart.
2003;
89
1191-1194
9
Willmann J K, Weishaupt D, Lachat M. et al .
Electrocardiographically gated multi-detector row CT for assessment of valvular morphology
and calcification in aortic stenosis.
Radiology.
2002;
225
120-128
10
Bonow R O, Carabello B, de Leon A C Jr. et al .
Guidelines for the management of patients with valvular heart disease: executive summary.
A report of the American College of Cardiology/American Heart Association Task Force
on Practice Guidelines (Committee on Management of Patients with Valvular Heart Disease).
Circulation.
1998;
98
1949-1984
11 Siemens Inc. SOMATOM Volume Zoom Application guide: Special Protocols Software
Version A20. Forchheim; Siemens 1999 17
12
Flohr B, Ohnesorge B.
Heart rate adaptive optimization of spatial and temporal resolution for electrocardiogram-gated
multislice spiral CT of the heart.
J Comput Assist Tomogr.
2001;
25
907-923
13
Kalender W A, Schmidt B, Zankl M. et al .
A PC program for estimating organ dose and effective dose values in computed tomography.
Eur Radiol.
1999;
9
552-562
14
Agatston A S, Janowitz W R, Hildner F J. et al .
Quantification of coronary artery calcium using ultrafast computed tomography.
J Am Coll Cardiol.
1990;
15
827-832
15
Ohnesorge B, Flohr T, Fischbach R. et al .
Reproducibility of coronary calcium quantification in repeat examinations with retrospectively
ECG-gated multisection spiral CT.
Eur Radiol.
2002;
12
1532-1540
16
Mochizuki Y, Pandian N G.
Role of echocardiography in the diagnosis and treatment of patients with aortic stenosis.
Curr Opin Cardiol.
2003;
18
327-333
17
Landis J, Koch G G.
The measurement of observer agreement for categorical data.
Biometrics.
1977;
33
159-174
18
Schmermund A, Erbel R, Silber S. MUNICH Registry Study Group .
Multislice normal incidence of coronary health. Age and gender distribution of coronary
artery calcium measured by four-slice computed tomography in 2030 persons with no
symptoms of coronary artery disease.
Am J Cardiol.
2002;
90
168-173
19
Becker C R, Kleffel T, Crispin A. et al .
Coronary artery calcium measurement: agreement of multirow detector and electron beam
CT.
AJR Am J Roentgenol.
2001;
176
1295-1298
20
Pohle K, Mäffert R, Ropers D. et al .
Progression of aortic valve calcification.
Circulation.
2001;
104
1927-1940
21
Lippert J A, White C S, Mason A C. et al .
Calcification of aortic valve detected incidentally on CT scans: prevalence and clinical
significance.
AJR Am J Roentgenol.
1995;
164
73-77
22
Yamamoto H, Shavelle D, Takasu J. et al .
Valvular and thoracic aortic calcium as a marker of the extent and severity of angiographic
coronary artery disease.
Am Heart J.
2003;
146
153-159
23
Adler Y, Vaturi M, Herz I. et al .
Nonobstructive aortic valve calcification: a window to significant coronary artery
disease.
Atherosclerosis.
2002;
161
193-197
24
Achenbach S, Ropers D, Pohle K. et al .
Influence of lipid-lowering therapy on the progression of coronary artery calcification:
a prospective evaluation.
Circulation.
2002;
106
1077-1082
25
Shavelle D M, Takasu J, Budoff M J. et al .
HMG CoA reductase inhibitor (statin) and aortic valve calcium.
Lancet.
2002;
359
1125-1126
26
Basso C, Boschello M, Perrone C. et al .
An echocardiographic survey of primary school children for bicuspid aortic valve.
Am J Cardiol.
2004;
93
661-663
27
Fenoglio J J Jr, McAllister H A Jr, DeCastro C M. et al .
Congenital bicuspid aortic valve after age 20.
Am J Cardiol.
1977;
39
164-169
28
Ulzheimer S, Kalender W A.
Assessment of calcium scoring performance in cardiac computed tomography.
Eur Radiol.
2003;
13
484-497
29
Hong C, Bae K T, Pilgram T K. et al .
Coronary artery calcium measurement with multi-detector row CT: in vitro assessment
of effect of radiation dose.
Radiology.
2002;
225
901-906
30
Poll L W, Cohnen M, Brachten S. et al .
Dose reduction in multi-slice CT of the heart by use of ECG-controlled tube current
modulation („ECG pulsing”): phantom measurements.
Fortschr Röntgenstr.
2002;
174
1500-1505
31
Mahnken A H, Wildberger J E, Simon J. et al .
Detection of coronary calcifications: feasibility of dose reduction with a body weight-adapted
examination protocol.
AJR Am J Roentgenol.
2003;
181
533-538
32
Jakobs T F, Wintersperger B J, Herzog P. et al .
Ultra-low-dose coronary artery calcium screening using multislice CT with retrospective
ECG gating.
Eur Radiol.
2003;
13
1923-1930
PD Dr. med. Andreas H. Mahnken
Klinik für radiologische Diagnostik, Universitätsklinikum der RWTH Aachen
Pauwelsstraße 30
52074 Aachen
Telefon: ++ 49/2 41/8 08 83 32
Fax: ++ 49/2 41/8 08 24 99
eMail: mahnken@rad.rwth-aachen.de