Horm Metab Res 2003; 35(11/12): 675-684
DOI: 10.1055/s-2004-814149
Original
© Georg Thieme Verlag Stuttgart · New York

Impact of IGF-I/IGF-IR Circuit on the Angiogenetic Properties of Ewing’s Sarcoma Cells

R.  Strammiello 1 , S.  Benini 1 , M.  C.  Manara 1 , S.  Perdichizzi 1 , M.  Serra 1 , E.  Spisni 2 , P.  Picci 1 , K.  Scotlandi 1
  • 1Laboratorio di Ricerca Oncologica, Istituti Ortopedici Rizzoli, Bologna, Italy
  • 2Dept. of Experimental Biology, University of Bologna, Bologna, Italy
Further Information

Publication History

Received 1 September 2003

Accepted after Revision 9 October 2003

Publication Date:
07 January 2004 (online)

Abstract

The insulin-like growth factor receptor I (IGF-I)-mediated circuit is a major autocrine loop for Ewing’s sarcoma (ES) cells, and plays a role the pathogenesis and malignancy of this tumor. IGF-I receptor (IGF-IR) has emerged as a good therapeutic site for ES patients. In this study, we analyzed the impact of strategies targeting the IGF-IR on the regulation of VEGFs, which are of fundamental importance in angiogenesis, and TGFβ, CTGF and Cyr61, which are factors primarily involved in skeletal growth control and angiogenesis. IGF-I increases expression of VEGF-A, TGFβ, CTGF and Cyr61 mRNA. However, only the modulation of VEGF-A expression appears to be mediated by IGF-IR. Functional assays on endothelial cells indicate a strict correlation between survival and proliferation of HUVECs and VEGF-A levels, confirming a major role for this factor in angiogenesis. Blockage of IGF-IR functions by neutralizing antibody or antisense strategies significantly reduced the expression and secretion of VEGF-A by ES cells, and supernatants of treated cells were unable to sustain the survival and proliferation of HUVECs. Analysis of the signaling mechanisms involved in constitutive or IGF-induced expression and secretion of VEGF-A indicated that PI3-K and MAPK signaling pathways are both required for VEGF expression and production in ES cells. Selective inhibitors LY294002 or PD98059 were highly effective in reducing the ability of ES cells to produce VEGF-A and stimulate survival and proliferation of HUVECs. Taken together, these findings add a new activity to the IGF-I repertoire in ES and highlight how disruption of IGF-IR functions may constitute an effective tool for the control of neovascularization in this tumor.

References

  • 1 Campanacci M. Bone and soft tissue tumors. 2nd edition. Wien; Springer-Verlag 1999
  • 2 Le Roith D, Roberts C T Jr. The insulin-like growth factor system and cancer.  Cancer Lett. 2003;  195 127-137
  • 3 Baserga R. The contradictions of the insulin-like growth factor 1 receptor.  Oncogene. 2000;  19 5574-5581
  • 4 Scotlandi K, Benini S, Sarti M, Serra M, Lollini P L, Maurici D, Picci P, Manara M C, Baldini N. Insulin-like growth factor I receptor-mediated circuit in Ewing’s sarcoma/Peripheral neuroectodermal tumor: a possible therapeutic target.  Cancer Res. 1996;  56 4570-4574
  • 5 Yee D, Favoni R E, Lebovic G S, Lombana F, Powell D R, Reynolds C P, Rosen N. Insulin-like growth factor I expression by tumors of neuroectodermal origin with the t(11;22) chromosomal translocation. A potential autocrine growth factor.  J Clin Investig. 1990;  86 1806-1814
  • 6 Girnita L, Girnita A, Wang M, Meis-Kindblom J M, Kindblom L G, Larsson O. A link berween basic fibroblast growth factor (bFGF) and EWS/FLI-1 in Ewing’s sarcoma cells.  Oncogene. 2000;  19 4298-4301
  • 7 Westwood G, Dibling B C, Cuthbert-Heavens D, Burchill S A. Basic fibroblast growth factor (bFGF)-induced cell death is mediated through a caspase-dependent and p53-independent cell death receptor pathway.  Oncogene. 2002;  21 809-824
  • 8 Zwerner J P, May W A. PDGF-C is an EWS/FLI induced transforming growth factor in Ewing family tumors.  Oncogene. 2001;  20 626-633
  • 9 Zwerner J P, May W A. Dominant negative PDGF-C inhibits growth of Ewing family tumor cell lines.  Oncogene. 2002;  21 3847-3854
  • 10 de Alava E, Panizo A, Antonescu C R, Huvos A G, Pardo-Mindan F J, Barr F G, Ladanyi M. Association of EWS-FLI1 type 1 fusion with lower proliferative rate in Ewing's sarcoma.  Am J Pathol. 2000;  156 849-855
  • 11 Toretzky J A, Kalebic T, Blakesley V, LeRoith D, Helman L J. The insulin-like growth factor-I receptor is required for EWS/FLI-1 transformation of fibroblasts.  J Biol Chem. 1997;  272 30 822-30 827
  • 12 Scotlandi K, Maini C, Manara M C, Benini S, Serra M, Cerisano V, Strammiello R, Baldini N, Lollini P-L, Nanni P, Nicoletti G, Picci P. Effectivenss of insulin-like growth factor I receptor antisense strategy against Ewing’s sarcoma cells.  Cancer Gene Therapy. 2002;  9 296-307
  • 13 Scotlandi K, Benini S, Nanni P, Lollini P-L, Nicoletti G, Landuzzi L, Serra M, Manara M C, Picci P, Baldini N. Blockage of insulin-like growth factor-I receptor inhibits the growth of Ewing’s sarcoma in athymic mice.  Cancer Res. 1998;  58 4127-4131
  • 14 Benini S, Manara M C, Baldini N, Cerisano V, Serra M, Mercuri M, Lollini P-L, Nanni P, Picci P, Scotlandi K. Inhibition of insulin-like growth factor I receptor increases the antitumor activity of doxorubicin and vincristine against Ewing’s sarcoma cells.  Clin Cancer Res. 2001;  7 1790-1797
  • 15 Scotlandi K, Avnet S, Benini S, Manara M C, Serra M, Cerisano V, Perdichizzi S, Lollini P-L, de Giovanni C, Landuzzi L, Picci P. Expression of an IGF-I receptor dominant negative mutant induces apoptosis, inhibits tumorigenesis and enhances chemosensitivity in Ewing’s sarcoma cells.  Int J Cancer. 2002;  101 11-16
  • 16 Folkman J. The role of angiogenesis in tumor growth. Semin.  Cancer Biol. 1992;  3 65-71
  • 17 Bergers G, Benjamin L E. Angiogenesis: Tumorigenesis and the angiogenic switch.  Nature Reviews Cancer. 2003;  3 401-410
  • 18 Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors.  FASEB J. 1999;  13 9-22
  • 19 Ferrara N. VEGF and the quest for tumor angiogenesis factor, Nature Reviews.  Cancer. 2002;  2 795-803
  • 20 Lau L F, Lam S C. The CCN family of angiogenic regulators: the integrin connection.  Exp Cell Res. 1999;  248 44-57
  • 21 Perbal B. NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues.  Mol Pathol. 2001;  54 57-79
  • 22 Chen C C, Chen N, Lau L F. The angiogenic factor Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts.  J Biol Chem. 2001;  276 10 443-10 452
  • 23 Shimo T, Nakanishi T, Nishida T, Asano M, Kanyama M, Kuboki T, Tamatani T, Tezuka K, Takemura M, Matsumura T, Takigawa M. Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo.  J Biochem. 1999;  126 137-145
  • 24 Shimo T, Nakanishi T, Nishida T, Asano M, Sasaki A, Kanyama M, Kuboki T, Matsumura T, Takigawa M. Involvement of CTGF, a hypertrophic chondrocyte-specific gene product, in tumor angiogenesis.  Oncology. 2001;  61 315-322
  • 25 Warren R S, Yuan H, Matli M R, Ferrara N, Donner D B. Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma.  J Biol Chem. 1996;  271 29 483-29 488
  • 26 Akagi Y, Liu W, Zebrowski B, Xie K, Ellis L M. Regulation of vascular endothelial growth factor expression in human colon cancer by insulin-like growth factor-I.  Cancer Res. 1998;  58 4008-4014
  • 27 Bermont L, Lamielle F, Fauconnet S, Esumi H, Weisz A, Adessi G L. Regulation of vascular endothelial growth factor expression by insulin-like growth factor-I in endometrial adenocarcinoma cells.  Int J Cancer. 2000;  85 117-123
  • 28 Miele C, Rochford J J, Filippa N, Giorgetti-Peraldi S, van Obberghen E. Insulin and insulin-like growth factor-I induce vascular endothelial growth factor mRNA expression via different signaling pathways.  J Biol Chem. 2000;  275 21 695-21 702
  • 29 Akeno N, Robins J, Zhang M, Czyzyk-Krzeska M F, Clemens T L. Induction of vascular endothelial growth factor by IGF-I in osteoblast-like cells is mediated by the PI3K signaling pathway through the hypoxia-inducible factor-2alpha.  Endocrinology. 2002;  143 420-425
  • 30 Kondo T, Vicent D, Suzuma K, Yanagisawa M, King G L, Holzenberger M, Kahn C R. Knockout of insulin and IGF-1 receptors on vascular endothelial cells protects against retinal neovascularization.  J Clin Invest. 2003;  111 1835-1842
  • 31 Reinmuth N, Liu W, Fan F, Jung Y D, Ahmad S A, Stoeltzing O, Bucana C D, Radinsky R, Ellis L M. Blockade of insulin-like growth factor I receptor function inhibits growth and angiogenesis of colon cancer.  Clin Cancer Res. 2002;  8 3259-3269
  • 32 Manara M C, Perbal B, Benini S, Strammiello R, Cerisano V, Perdichizzi S, Serra M, Astolfi A, Bertoni F, Alami J, Yeger H, Picci P, Scotlandi K. The expression of ccn3(nov) gene in musculoskeletal tumors.  Am J Pathol. 2002;  160 849-859
  • 33 Spisni E, Bartolini G, Orlandi M, Belletti B, Santi S, Tomasi V. Prostacyclin (PG12) synthase is a constitutively expressed enzyme in human endothelial cells.  Exp Cell Res. 1995;  219 507-513
  • 34 Cheng S Y, Lagane M, Huang H S, Cavenee W K. Intracerebral tumor-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoform VEGF 121 and VEGF165 but not VEGF189.  Proc Natl Acad Sci USA. 1997;  94 12 081-12 087
  • 35 Resnicoff M, Coppola D, Sell C, Rubin R, Ferrone S, Baserga R. Growth inhibition of human melanoma cells in nude mice by antisense strategies to the type 1 insulin-like growth factor receptor.  Cancer Res. 1994;  54 4848-4850
  • 36 Benini S, Strammiello R, Cerisano V, Perdichizzi S, Manara M C, Serra M, Picci P, Scotlandi K. The contribuition of MEK/MAPK and PI-3 K signaling pathway to the malignant behaviour of Ewing’s sarcoma cells: therapeutics prospects.  Int J Cancer in press. ; 
  • 37 Smith L E, Shen W, Perruzzi C, Soker S, Kinose F, Xu X, Robinson G, Driver S, Bischoff J, Zhang B, Schaeffer J M, Senger D R. Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor.  Nat Med. 1999;  5 1390-1395
  • 38 Hellstrom A, Perruzzi C, Ju M, Engstrom E, Hard A L, Liu J L, Albertsson-Wikland K, Carlsson B, Niklasson A, Sjodell L, LeRoith D, Senger D R, Smith L E. Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity.  Proc Natl Acad Sci USA. 2001;  98 5804-5808
  • 39 Takigawa M. CTGF/Hcs24 as a multifunctional growth factor for fibroblasts, chondrocytes and vascular endothelial cells.  Drug News Perspect. 2003;  16 11-21
  • 40 Ivkovic S, Yoon B S, Popoff S N, Safadi F F, Libuda D E, Stephenson R C, Daluiski A, Lyons K M. Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development.  Development. 2003;  130 2779-2791
  • 41 Mo F E, Muntean A G, Chen C C, Stolz D B, Watkins S C, Lau L F. CYR61 (CCN1) is essential for placental development and vascular integrity.  Mol Cell Biol. 2002;  22 8709-8720
  • 42 Brigstock D R. Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61).  Angiogenesis. 2002;  5 153-165
  • 43 Tokuda H, Hatakeyama D, Akamatsu S, Tanabe K, Yoshida M, Shibata T, Kozawa O. Involvement of MAP kinases in TGF-beta-stimulated vascular endothelial growth factor synthesis in osteoblasts.  Arch Biochem Biophys. 2003;  415 117-125
  • 44 Canalis E, Pash J, Gabbitas B, Rydziel S, Varghese S. Growth factors regulate the synthesis of insulin-like growth factor-I in bone cell cultures.  Endocrinology. 1993;  133 33-38
  • 45 Street J, Bao M, de Guzman L, Bunting S, Peale F V Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland J L, Daugherty A, van Bruggen N, Redmond H P, Carano R A, Filvaroff E H. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover.  Proc Natl Acad Sci USA. 2002;  99 9656-9661
  • 46 Quevedo C, Alcazar A, Salinas M. Two different signal transduction pathways are implicated in the regulation of initiation factor 2B activity in insulin-like growth factor-1-stimulated neuronal cells.  J Biol Chem. 2000;  275 19 192-19 197
  • 47 Burroughs K D, Oh J, Barrett J C, DiAugustine R P. Phosphatidylinositol 3-kinase and mek1/2 are necessary for insulin-like growth factor-I-induced vascular endothelial growth factor synthesis in prostate epithelial cells: a role for hypoxia-inducible factor-1?.  Mol Cancer Res. 2003;  1 312-322

K. Scotlandi, Ph. D. 

Laboratorio di Ricerca Oncologica · Istituti Ortopedici Rizzoli

Via Di Barbiano 1/10 · 40136 Bologna · Italy

Phone: + 39 (51) 636-67-60

Fax: + 39 (51) 636-67-61

Email: katia.scotlandi@ior.it