Abstract
3,5,3’-triiodothyroacetic acid (TRIAC) has been used to suppress pituitary TSH secretion with reported attenuation of extrapituitary effects. We investigated whether equivalent doses of T3 and TRIAC preventing the induction of goiter by methimazole (MMI) had a different or similar impact on peripheral tissues, such as liver and bone. In particular, we compared the effects of both compounds on the activity of the hepatic thyroid hormone-responsive enzymes, malic enzyme and L-glicerol-3-P dehydrogenase; bone mineral density and biochemical parameters of bone turnover, such as bone alkaline phosphatase (b-ALP) and the carboxy-terminal telopeptide region of type I collagen (β-CTX); and the activity of thyroid ornithine decarboxylase (ODC). We also compared the effects of T3 and TRIAC on the involution of MMI-induced goiter. Our results showed that TRIAC was more effective than T3 to reduce MMI-induced goiter in a short-term goiter involution assay. TRIAC increased hepatic enzymes activity and β-CTX levels, a parameter of bone resorption, more than T3 . However, bone mineral density was not altered by either treatment. Both compounds even reduced ODC activity at doses that were not effective at the pituitary level. These results demonstrate increased TRIAC hepatic and antigoitrogenic activity compared to T3 . TRIAC induces an imbalance in bone remodeling without affecting bone mineral density. Further studies are required to clarify this point.
Key words
Thyroid growth - Malic enzyme - L glycerol 3-P-dehydrogenase - Bone formation - Bone resorption - Methimazole-induced goiter
References
1
Singer P A, Cooper D S, Daniels G H, Ladenson P W, Greenspan F S, Levy E G, Braverman L E, Clark O H, McDougall I R, Ain K V, Dorfman S G.
Treatment guidelines for patients with thyroid nodules an well-differentiated thyroid cancer.
Arch Intern Med.
1996;
156
2165-2172
2
Gharib H.
Changing concepts in the diagnosis and management of thyroid nodules.
Endocrinol Metab Clin North Am.
1997;
26
777-800
3
Gullu S, Gurses A, Baskal N, Uysal A R, Kamel A N, Erdogan G.
Suppressive therapy with levothyroxine for euthyroid diffuse and nodular goiter.
Endocr J.
1999;
46
221-226
4
Lima N, Knobel M, Cavaliere H, Sztejnsznajd C, Tominmori E, Medeiros-Neto G.
Levothyroxine suppressive therapy is partially effective in treating patients with benign solid thyroid nodules and multinodular goiters.
Thyroid.
1997;
7
691-697
5
Paggi A, Persegani-Trimarchi C, Russo P, Mastropasqua M, Mosetti M A, Losi T, Leri O.
Solitary nodular disease and multinodular goiter: a retrospective study on suppressive versus replacement levothyroxine therapy.
Endocrinol Res.
1999;
25
229-238
6
Gharib H, Mazzaferri E L.
Thyroxine suppressive therapy in patients with nodular disease.
Ann Intern Med.
1998;
18
386-394
7
Faber J, Galloe A M.
Changes in bone mass during prolonged subclinical hyperthyroidism due to L-thyroxine treatment: a meta-analysis.
Eur J Endocrinol.
1998;
130
350-356
8
Mosekilde L, Eriksen E F, Charles P.
Effects of thyroid hormones on bone and mineral metabolism.
Endocrinol Metab Clin North Am.
1990;
19
35-62
9
Baran D T, Braverman L E.
Thyroid hormones and bone mass.
J Clin Endocrinol Metab.
1991;
72
1182-1183
10
Uzzan B, Campos J, Cucherat M, Nony P, Boissel J P, Perret G Y.
Effects on bone mass of long-term treatment with thyroid hormones: a meta-analysis.
J Clin Endocrinol Metab.
1996;
81
4278-4289
11
Stall G M, Harris S, Skoll L J, Dawson-Hughes B.
Accelerated bone loss in hypothyroid patients over-treated with L-thyroxine.
Ann Int Med.
1990;
113
265-269
12
Hadji P, Hars O, Sturm G, Bauer T, Emons G, Schulz K.
The effect of long-term, non-suppressive levothyroxine treatment on quantitative ultrasonometry of bone in women.
Eur J Endocrinol.
2000;
142
445-450
13
Biondi B, Fazio S, Cuocolo A, Sabatini D, Nicolai E, Lombardi G, Salvatore M, Sacca L.
Impaired cardiac reserve and exercise capacity in patients receiving lon-term thyrotropin suppressive therapy with levotyroxine.
J Clin Endocrinol Metab.
1996;
81
4224-4228
14
Muller C G, Bayley T A, Harrison J E, Tsang R.
Possible limited bone loss with suppressive thyroxine therapy is unlikely to have clinical relevance.
Thyroid.
1995;
5
81-87
15
Hawkins F, Rigopoulou D, Papapietro K, Lopez M B.
Spinal bone mass after long term treatment with L-thyroxin in postmenopausal women with thyroid cancer and chronic lymphocytic thyroiditis.
Calcif Tissue Int.
1994;
54
16-19
16
Schueler P A, Schwartz H L, Strait K A, Mariash C N, Oppenheimer J H.
Binding of 3,5,3'-triiodothyronine (T3 ) and its analogs to the in vitro translational products of c-erbA protooncogenes: differences in the affinity of the alpha- and beta-forms for the acetic acid analog and failure of the human testis and kidney alpha-2 products to bind T3 .
Mol Endocrinol.
1990;
4
227-234
17
Takeda T, Suzuki S, Liu R-T, DeGroot L J.
Triiodothyroacetic acid has unique potential for therapy of resistance to thyroid hormone.
J Clin Endocrinol Metab.
1995;
80
2033-2040
18
Oppenheimer J H, Schwartz H L, Surks M I.
Determination of common parameters of iodothyronine metabolism and distribution in man by non compartmental analysis.
J Clin Endocrinol Metab.
1975 (a);
41
319-324
19
Oppenheimer J H, Schwartz H L, Surks M I.
Erratum: revised calculations of common parameters iodo-thyronine metabolism and distribution by noncompartmental analysis.
J Clin Endocrinol Metabol.
1975 (b);
41
1172-1173
20
Goslings B, Schwartz H L, Dillmann W, Surks M I, Oppenheimer J H.
Comparison of the metabolism and distribution of L-triiodothyronine and triiodothyroacetic acid in the rat: a possible explanation of differential hormonal potency.
Endocrinology.
1976;
98
666-675
21
Jaffiol C, Baldet L, Papachristou C, Bringer J.
Intérèt de l’acide triiodothyroacetique comme traitement freinateur de la sécrétion thyréotrope en pathologie thyroidienne.
Presse Med.
1988;
17
57-60
22
Jaffiol C, Daures J P, Nsakala N, Guerenova J, Baldet L.
Le controle a long terme du traitment médicale du cancer thyroidiene différencié.
Ann Endocrinol (Paris).
1995;
56
119-126
23
Beck-Peccoz P, Piscitelli G, Cattaneo M G, Faglia G.
Succesful treatment of hyperthyroidism due to non-neoplastic pituitary TSH hypersecretion with 3',5',3 triiodothyroacetic acid (TRIAC).
J Endocrinol Invest.
1983;
6
217-223
24
Refetoff S.
Weiss RE, Usala SJ. The syndromes of resistance to thyroid hormone.
Endocr Rev.
1993;
14
348-399
25
Kunitake J M, Hartman N, Henson L C, Lieberman J, Williams D E, Wong M, Hershman J M.
3,5,3'-triiodothyroacetic acid therapy for thyroid hormone resistance.
J Clin Endocrinol Metab.
1989;
69
461-466
26
Beck-Peccoz P, Sartorio A, De Medici C, Grugni G, Morabito F, Faglia G.
Dissociated thyromimetic effects of 3,5,3'-triiodothyroacetic acid (TRIAC) at the pituitary and peripheral tissue levels.
J Endocrinol Invest.
1988;
11
113-118
27
Medeiros-Neto G, Kallas W G, Knobel M, Cavaliere H, Mattar E.
Triac (3,5,3'-triiodothyroacetic acid) partially inhibits the thyrotropin response to synthetic thyrotropin-releasing hormone in normal and thyroidectomized hypothyroid patients.
J Clin Endocrinol Metab.
1980;
50
223-225
28
Bracco D, Morin O, Schutz Y, Liang H, Jequier E, Burger A G.
Comparison of the metabolic and endocrine effects of 3,5,3'-triiodothyroacetic acid and thyroxin.
J Clin Endocrinol Metab.
1993;
77
221-228
29
Sherman S I, Ringel M D, Smith M J, Kopelen H A, Zoghbi W A, Ladenson P W.
Augmented hepatic and skeletal thyromimetic effects of Tiratricol in comparison with Levothyroxine.
J Clin Endocrinol Metabol.
1997;
82
2153- 2158
30
Kawaguchi H, Pilbeam C C, Woodiel F N, Raisz L G.
Comparison of the effects of 3,5,3'-triiodothyroacetic acid and triiodothyronine on bone resorption in cultured fetal rat long bones and neonatal mouse calvariae.
J Bone Miner Res.
1994;
9
247-253
31
Liang H, Juge-Aubry C E, O’Connell M, Burger A G.
Organ-specific effects of 3,5,3'-triiodothyroacetic acid in rats.
Eur J Endocrinol.
1997;
137
537-544
32
Ma H T, Reuse S, Koibuchi N, Matsuzaki S.
Acute inhibitory effect of excess iodide on ornithine decarboxylase in the thyroid of propylthiouracil-treated rats.
J Endocrinol.
1996;
150
369-376
33
Matsuzaki S, Kakegawa T, Suzuki M, Hamana K.
Thyroid function and Polyamines III. Changes in Ornithine Decarboxylase Activity and Polyamine contents in the rat Thyroid during hyperplasia and involution.
Endocrinol Japon.
1978;
25
129-139
34
Hsu R Y, Lardy H A.
Pigeon liver malic enzyme.
J Biol Chem.
1967;
242
520-526
35
Lee Y P, Lardy H A.
Influence of thyroid hormones on L-glycerolphosphate dehydrogenases and other dehydrogenases in various organs of the rat.
J Biol Chem.
1965;
240
1427-1436
36
Bradford M M.
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
Anal Biochem.
1976;
72
248-254
37
Farley J R, Hall S L, Llacas D.
Quantification of skeletal alkaline phosphatase in osteoporotic serum by wheat germ agglutinin precipitation, heat inactivation, and a two-site immunoradiometric assay.
Clin Chem.
1994;
40
1749-1756
38
Zeni S N, Gomez Acotto C, Mautalen C.
Olpadronate prevents thyroxin-induced osteopenia in OVX rats.
Bone.
1997;
21
329-333
39
Derwahl M, Broecker M, Kraiem Z.
Thyrotropin may not be the dominant growth factor in benign and malignant thyroid tumors.
J Clinical Endocrinol Metabol.
1999;
84
829-839
40
Mirell C J, Yanagisawa M, Hershman J M.
Triac reduces serum TSH without decreasing alpha and beta TSH messenger RNAs.
Horm Metab Res.
1989;
21
123-126
41
Brenta G, Schnitman M, Fretes O, Facco E, Gurfinkel M, Damilano S, Pacenza N, Blanco A, Gonzalez E, Pisarev M A.
Comparative efficacy and side effects of the treatment of euthyroid goiter with levo-thyroxine or triiodothyroacetic acid.
J Clin Endocrinol Metab..
2003;
88
5287-5292
42
Richman R, Park S, Akbar M, Yu S, Burke G.
Regulation of Thyroid ornithine decarboxylase (ODC) by thyrotropin. I. The rat.
Endocrinology.
1975;
96
1403-1412
43
Zusman D R, Burrow G N.
Thyroid- stimulating hormone regulation of ornithine decarboxylase activity in the thyroid.
Endocrinology.
1975;
97
1089-1095
44
Juvenal G J, Pisarev M A, Kleiman de Pisarev D L, Altschuler N.
Uptake, metabolism and action of triiodothyronine in calf thyroid slices.
Mol Cell Endocrinol.
1981;
22
31-40
45
Erkenbrack D E, Rosenberg L L.
Binding of thyroid hormones to nuclear extracts of thyroid cells.
Endocrinology.
1986;
119
311-317
46
Pisarev M A, Juvenal G J, Kleiman de Pisarev D L, Chazenbalk G D, Krawiec L, Valsechi R M.
Subcellular localization and binding of 125-I triiodothyronine in calf thyroid.
Horm Metab Res.
1986;
18
318-322
47
Juge-Aubry C E, Morin O, Pernin A T, Liang H, Philippe J, Burger A G.
Long-lasting effects of TRIAC and thyroxine on the control of thyrotropin and hepatic deiodinase type I.
Eur J Endocrinol.
1995;
132
751-758
48
Sherman S I, Ladenson P W.
Organ-specific effects of tiratricol: a thyroid hormone analog with hepatic, not pituitary, superagonist effects.
J Clin Endocrinol Metab.
1992;
75
901-905
49
Schwartz H L, Lazar M A, Oppenheimer J H.
Widespread distribution of immunoreactive thyroid hormone β2 in the nuclei of extrapituitary rat tissues.
J Biol Chem.
1994;
269
24 777-24 782
50
Messier N, Langlois M F.
Triac regulation of transcription is T(3) receptor isoform- and response element-specific.
Mol Cell Endocrinol.
2000;
165
57-66
51
Petty K.
Tissue-and cell-specific distribution of proteins that interact with the human thyroid hormone receptor β.
Mol Cell Endocrinol.
1995;
108
131-142
52
Allain T J, Chambers T J, Flanagan A M, McGregor A M.
Tri-iodothyronine stimulates rat osteoclastic bone resorption by an indirect effect.
J Endocrinol.
1992;
133
327-331
53
Tarjan G, Stern P H.
Triiodothyronine potentiates the stimulatory effects of interleukin-1b on bone resorption and medium interleukin-6 content in fetal rat limb bone cultures.
J Bone Miner Res.
1995;
10
1321-1326
Dr. Diana L. Kleiman de Pisarev
Departamento de Bioquímica Humana · Facultad de Medicina · Universidad de Buenos Aires
Paraguay 2155 · 1121 Buenos Aires · Argentina
Fax: + 54 (11) 4508-3672 ·
Email: dkleiman@fmed.uba.ar