Subscribe to RSS
DOI: 10.1055/s-2004-815543
© Georg Thieme Verlag Stuttgart · New York
Metabolomic Strategy for the Classification and Quality Control of Phytomedicine: A Case Study of Chamomile Flower (Matricaria recutita L.)
Publication History
Received: September 1, 2003
Accepted: December 30, 2003
Publication Date:
23 March 2004 (online)
Abstract
In order to improve the accuracy and consistency of control phytomedicine preparations worldwide, regulatory authorities are requesting research into new analytical methods for the stricter standardisation of phytomedicines. Such methods have to be both objective and robust, and should address the reproducibility of the content of the chemical profiles. NMR-based metabolomics, which combines high-resolution 1H-NMR spectroscopy with chemometric analysis, has been employed as an innovative way to meet those demands. In this paper, chamomile flowers from three different geographical regions, namely, Egypt, Hungary and Slovakia were characterised using 1H-NMR spectroscopy followed by principal component analysis. It was found that the origin, purity and preparation methods contributed to the differences observed in prepared chamomile extracts. In addition, this method also enabled the elucidation of the molecular information embedded in the spectra responsible for the observed variability. The metabolomic strategy employed in the current study should provide an efficient tool for the quality control and authentication of phytomedicines.
Abbreviations
PCA:principal components analysis
ST:Stalk
QC:quality control
TSP:sodium 3-(tri-methylsilyl) propionate-2,2,3,3-d4
PLE:pressurised solvent extraction
Key words
NMR-based metabolomics - chamomile flower - Matricaria recutita L. - principal component analysis - quality control - authentication - phytomedicines
References
- 1 Eisenberg D M, Davis R B, Ettner S L, Appel S, Wilkey S, van Rompay M, Kessler R C. Trends in alternative medicine use in the United States, 1990 - 1997 - Results of a follow-up national survey. JAMA. 1998; 280 1569-75
- 2 Bailey N JC, Sampson J, Hylands P J, Nicholson J K, Holmes E. Multi-component metabolic classification of commercial feverfew preparations via high-field 1H NMR spectroscopy and chemometrics. Planta Med. 2002; 68 734-8
- 3 Abe T, Kamo K. Seasonal changes of floral frequency and composition of flower in two cool temperate secondary forests in Japan. Forest Ecol Manag. 2003; 175 153-62
- 4 Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometr Intell Lab. 1987; 2 37-52
- 5 Gavaghan C L, Holmes E, Lenz E, Wilson I D, Nicholson J K. An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett. 2000; 484 169-74
- 6 Nicholls A W, Holmes E, Lindon J C, Shockcor J P, Farrant R D, Haselden J N, Damment S JP, Waterfield C J, Nicholson J K. Metabonomic investigations into hydrazine toxicity in the rat. Chem Res Toxicol. 2001; 14 975-87
- 7 Lindon J C, Nicholson J K, Holmes E, Everett J R. Metabonomics: Metabolic processes studied by NMR spectroscopy of biofluids. Concept Magnetic Res. 2000; 12 289-320
- 8 Belton P S, Colquhoun I J, Kemsley E K, Delgadillo I, Roma P, Dennis M J, Sharman M, Holmes E, Nicholson J K, Spraul M. Application of chemometrics to the 1H NMR spectra of apple juices: discrimination between apple varieties. Food Chem. 1998; 61 207-13
- 9 Vogels J TWE, Terwel L, Tas A C, vandenBerg F, Dukel F, vanderGreef J. Detection of adulteration in orange juices by a new screening method using proton NMR spectroscopy in combination with pattern recognition techniques. J Agri Food Chem. 1996; 44 175-80
- 10 Nicholson J K, Foxall P JD, Spraul M, Farrant R D, Lindon J C. 750-MHz 1H and 1H-13C NMR-Spectroscopy of human blood-plasma. Anal Chem. 1995; 67 793-811
- 11 Rucker S P, Shaka A J. Broad-band homonuclear cross polarization in 2D NMR using Dipsi-2. Molecular Physics. 1989; 68 509-17
Yulan Wang
Biological Chemistry
Biomedical Sciences Division
Faculty of Medicine
Imperial College London
Sir Alexander Fleming Building
South Kensington
London SW7 2AZ
U.K.
Phone: +44-20-7594-3023
Fax: +44-20-7594-3226
Email: yulan.wang@imperial.ac.uk