Abstract
The scope and limitation of lithium-ethylenediamine-THF-mediated reductive bond cleavage
at the α-position of aromatics were examined. Very mild conditions such as lithium
metal (5 equiv) and ethylenediamine (7 equiv) in oxygen-free THF were quite effective
for the demethylation of aromatic ethers even at as low as -10 °C. Allyl benzyl ethers
were also deprotected under these conditions with very little change of the allylic
alcohol moiety. Through this study, 2,6-dimethylbenzyl (m -xylylmethyl, MXM) group was developed as an alternative of benzyl group, which is
readily cleavable under the above mentioned reductive conditions.
Key words
electron transfer - ethers - lithium - phenols - protective groups
References
<A NAME="RF11703SS-1">1 </A>
Birch AJ.
Quart. Rev.
1950,
69
<A NAME="RF11703SS-2">2 </A>
Kaiser EM.
Synthesis
1972,
391
<A NAME="RF11703SS-3A">3a </A>
Sartoretto PA.
Sowa FJ.
J. Am. Chem. Soc.
1937,
59:
603
<A NAME="RF11703SS-3B">3b </A>
Kranzfelder AL.
Verbanc JJ.
Sowa FJ.
J. Am. Chem. Soc.
1937,
59:
1488
<A NAME="RF11703SS-3C">3c </A>
Weber FC.
Sowa FJ.
J. Am. Chem. Soc.
1938,
60:
94
<A NAME="RF11703SS-4">4 </A>
Birch AJ.
J. Chem. Soc.
1947,
102
<A NAME="RF11703SS-5">5 </A>
Reggel L.
Friedel RA.
Wender I.
J. Org. Chem.
1957,
22:
891
<A NAME="RF11703SS-6">6 </A>
Mejer S.
Gawecka K.
Jablonski L.
Roczn. Chem.
1977,
51:
2477
<A NAME="RF11703SS-7">7 </A>
Jablonski L.
Kotlarek W.
Mejer S.
Bull. Acad. Polon. Sci. Ser. Sci. Chim.
1975,
24:
101
<A NAME="RF11703SS-8">8 </A>
Garst ME.
Dolby LJ.
Esfandiari S.
Fedoruk NA.
Chamberlain NC.
Avey AA.
J. Org. Chem.
2000,
65:
7098
<A NAME="RF11703SS-9">9 </A>
Mann FG.
Pragnell MJ.
J. Chem. Soc.
1965,
4120
<A NAME="RF11703SS-10">10 </A>
Node M.
Ohta K.
Kajimoto T.
Nishide K.
Fujita E.
Fuji K.
Chem. Pharm. Bull.
1983,
31:
4178
<A NAME="RF11703SS-11">11 </A>
Nishioka H.
Nagasawa M.
Yoshida K.
Synthesis
2000,
243
<A NAME="RF11703SS-12">12 </A>
Chakraborti AK.
Sharma L.
Nayak MK.
J. Org. Chem.
2002,
67:
6406
<A NAME="RF11703SS-13">13 </A>
Hurd CD.
Oliver GL.
J. Am. Chem. Soc.
1959,
81:
2795
<A NAME="RF11703SS-14">14 </A>
Eagle DH.
J. Org. Chem.
1963,
28:
1703
<A NAME="RF11703SS-15">15 </A>
Zimmerman HE.
Wang PA.
J. Am. Chem. Soc.
1993,
115:
2205
<A NAME="RF11703SS-16">16 </A>
Yus M.
Foubelo F.
Ferrández JV.
Chem. Lett.
2002,
726
<A NAME="RF11703SS-17">17 </A>
Hwu JR.
Wein YS.
Leu Y.-J.
J. Org. Chem.
1996,
61:
1493
<A NAME="RF11703SS-18">18 </A>
Hwu JR.
Chus V.
Schroeder JE.
Barrans RE.
Khoudary KP.
Wang N.
Wetzel JM.
J. Org. Chem.
1986,
51:
4731
<A NAME="RF11703SS-19">19 </A>
Groth U.
Schölkopf U.
Tiller T.
Tetrahedron
1991,
47:
2835
<A NAME="RF11703SS-20">20 </A>
Liu H.-J.
Yip J.
Shia K.-S.
Tetrahedron Lett.
1997,
38:
2253
<A NAME="RF11703SS-21">21 </A>
Alonso E.
Ramón DJ.
Yus M.
Tetrahedron
1997,
53:
14355
<A NAME="RF11703SS-22">22 </A>
Shi L.
Xia WJ.
Zhang FM.
Tu YQ.
Synlett
2002,
1505
<A NAME="RF11703SS-23">23 </A>
Makabe H.
Kong LK.
Hirota M.
Org. Lett.
2003,
5:
27
<A NAME="RF11703SS-24">24 </A>
2,6-Dimethylbenzyl group is possible to be abbreviated as DMB, The DMB group, however,
is already well know as 2,4-dimethoxybenzyl group. We propose here the MXM group (m -xylylmethyl) to avoid the confusion in future.
<A NAME="RF11703SS-25">25 </A>
Brown CA.
Yamashita A.
J. Am. Chem. Soc.
1975,
97:
891
<A NAME="RF11703SS-26">26 </A>
Doolittle RE.
Org. Prop. Proc. Int.
1981,
13:
179
<A NAME="RF11703SS-27">27 </A>
Davis R.
Muchowski JM.
Synthesis
1982,
987
<A NAME="RF11703SS-28">28 </A>
Soloshonok VA.
Tang X.
Hruby VJ.
Tetrahedron
2001,
56:
6375
<A NAME="RF11703SS-29">29 </A>
Cardani C.
Casnati G.
Piazzi F.
Cavalleri B.
Gazz. Chim. Ital.
1958,
88:
487
<A NAME="RF11703SS-30">30 </A>
Rang S.
Strenze T.
Muurisepp M.
Eisen O.
Org. Mass Spectrom.
1984,
19:
193
<A NAME="RF11703SS-31">31 </A>
Tateiwa J.
Hayama E.
Nishimura T.
Uemura S.
J. Chem. Soc., Perkin Trans. 1
1997,
1923
<A NAME="RF11703SS-32">32 </A>
Dupont G.
Dulou R.
Pigerol C.
Bull. Chim. Soc. Fr.
1955,
638
<A NAME="RF11703SS-33">33 </A>
Ali SS.
Echner H.
Kahn KM.
Schroder C.
Hasan M.
Rahaman A.-U.
Voelter W.
Z. Naturforsch. B: Chem. Sci.
1994,
49:
1425
<A NAME="RF11703SS-34">34 </A>
Deck LM.
Brazwell EM.
Vander Jagt DL.
Royer RE.
Org. Prep. Proced. Int.
1990,
22:
495
<A NAME="RF11703SS-35">35 </A>
Konig WA.
Faasch H.
Heitsch H.
Colberg C.
Hausen BM.
Z. Naturforsch., B: Chem. Sci.
1993,
48:
387
<A NAME="RF11703SS-36">36 </A>
Tsatsas G.
Guioka-Dedopoulou V.
Bull. Soc. Chim. Fr.
1964,
10:
2610
<A NAME="RF11703SS-37">37 </A>
Gonzalez AG.
Barrera JB.
Rodriguez Perez EM.
Z. Naturforsch., C: Biosci.
1991,
46:
12
<A NAME="RF11703SS-38">38 </A>
Schmalz H.-G.
Volk T.
Bernicke D.
Huneck S.
Tetrahedron
1997,
53:
9219
<A NAME="RF11703SS-39">39 </A>
Miyakoshi T.
Togashi H.
Synthesis
1990,
407
<A NAME="RF11703SS-40">40 </A>
Bates RB.
Siahaan TJ.
J. Org. Chem.
1986,
51:
1432
<A NAME="RF11703SS-41">41 </A>
Baudin J.-B.
Itka B.-W.
Hareau G.
Julia SA.
Lorne R.
Pascard C.
Tetrahedron
1991,
47:
6655
<A NAME="RF11703SS-42A">42a </A>
Jankowski P.
Marczak S.
Masnyk M.
Wicha J.
J. Organomet. Chem.
1991,
403:
49
<A NAME="RF11703SS-42B">42b </A>
Zhang Z.-B.
Wang Z.-M.
Wang Y.-X.
Liu H.-Q.
Lei G.-X.
Shi M.
J. Chem. Soc., Perkin Trans. 1
2000,
53
<A NAME="RF11703SS-43">43 </A>
Cook BR.
Reinert TJ.
Suslick KS.
J. Am. Chem. Soc.
1986,
108:
7281