Subscribe to RSS
DOI: 10.1055/s-2004-815989
Allene: As Small in Size as Versatile in Synthesis. A General Scope of its Usefulness as a C 3 -Synthon for Carbocyclic Annulations
Publication History
Publication Date:
25 February 2004 (online)
Abstract
Allenes react with silylcuprates leading to allyl- or vinylsilanes depending on the structure of the allene and the nature of the silylcuprate. The silyl group used and temperature conditions can also influence the final outcome. Reversibility is a common trend found in these processes. In general, low order cyanosilylcuprates react with allenes, at low temperature, giving allylsilanes selectively. The intermediate allysilane-vinylcuprate can be captured with a wide variety of electrophiles affording functionalized allysilanes of great potential in organic synthesis. In particular, reaction with carbon electrophiles provides new opportunities for the carbocyclic synthesis of 5-, 6- and 7-membered rings, wherein the allenic system behaves, formally, as a nucleophilic C3-synthon of high synthetic versatility.
Key words
allenes - silylcuprates - allylsilanes - vinylsilanes - cyclization
-
1a
The Chemistry of Ketenes, Allenes and Related Compounds
Patai S. Wiley; New York: 1980. -
1b
Acetylenes, Allenes and Cumulenes
Brandsma L. Academic Press; London: 2003. - 2
Allenes in Organic Synthesis
Schuster HF.Coppola GM. Wiley; New York: 1984. - 3
The Chemistry of the Allenes
Vols. 1-3:
Landor SR. Academic Press; London: 1982. -
4a
Damiano JC.Luche JL.Crabbé P. Tetrahedron Lett. 1976, 779 -
4b
Berlan J.Battioni JP.Koosha K. Tetrahedron Lett. 1976, 3335 -
4c
Bertrand M.Cul G.Viala J. Tetrahedron Lett. 1977, 1785 -
4d
Dieter RK.Lu K. Tetrahedron Lett. 1999, 40: 4011 -
4e
Lee SH.Hulce M. Tetrahedron Lett. 1990, 31: 311 -
4f See also:
Tanaka H.Yamaguchi Y.Sumida ST.Kuroboshi M.Mochizuki M.Torii S. J. Chem. Soc., Perkin Trans. 1 1999, 3463 -
5a
Morizawa Y.Oda H.Oshima K. Tetrahedron Lett. 1984, 25: 1163 -
5b
Singh SM.Oehlschlager AC. Can. J. Chem. 1991, 69: 1872 -
5c
Barbero A.Cuadrado P.González AM.Pulido FJ.Rubio R.Fleming I. Tetrahedron Lett. 1992, 33: 5841 -
6a
Fleming I.Pulido FJ. J. Chem.. Soc., Chem. Commun. 1986, 1010 -
6b
Fleming I.Rowley M.Cuadrado P.González AM.Pulido FJ. Tetrahedron 1989, 45: 413 -
6c
Barbero A.Cuadrado P.García C.Pulido FJ.Rincón JA. J. Org. Chem. 1998, 63: 7531 - 7
George MV.Peterson DJ.Gilman H. J. Am. Chem. Soc. 1960, 82: 403 - 8
Still WC. J. Org. Chem. 1976, 41: 3063 - 9
Cuadrado P.González AM.Pulido FJ.Fleming I. Tetrahedron Lett. 1988, 29: 1825 - 10
Blanco FJ.Cuadrado P.González AM.Pulido FJ.Fleming I. Tetrahedron Lett. 1994, 35: 8881 - 11
Sarkar TK. Allylsilanes, In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 4:Fleming I. Thieme; Stuttgart: 2001. - 12
Cuadrado P.González AM.González B.Pulido FJ. Synth. Commun. 1989, 19: 275 - 13
Barbero A.Cuadrado P.González AM.Pulido FJ.Fleming I. J. Chem. Soc., Perkin Trans. 1 1991, 2811 - 14
Barbero A.García C.Pulido FJ. Tetrahedron 2000, 56: 2739 -
15a An example of how variable the equilibration temperature can be in metallocupration of allenes is seen in the stannylcupration of allene, where the thermodynamic vinylstannane, analogue to 3, is obtained at any temperature above -78 °C, whereas the kinetic allylstannane is the only product isolated at temperatures near to -100 °C. See:
Barbero A.Cuadrado P.González AM.Pulido FJ.Fleming I. J. Chem. Soc., Chem. Commun. 1990, 1030 -
15b See also:
Barbero A.Cuadrado P.González AM.Pulido FJ.Fleming I. J. Chem. Soc., Perkin Trans. 1 1992, 327 - 16
Liepins V.Karlström SE.Bäckvall J.-E. Org. Lett. 2000, 2: 1237 - 17
Liepins V.Bäckvall J.-E. Chem. Commun. 2001, 265 - 18
Liepins V.Bäckvall J.-E. Org. Lett. 2001, 3: 1861 - 19
Barbero A.García C.Pulido FJ. Synlett 2001, 824 - 20
Barbero A.García C.Pulido FJ. Tetrahedron Lett. 1999, 40: 6649 - 21
Trost BM.Coppola BP. J. Am. Chem. Soc. 1982, 104: 6879 - 22
Barbero A.Castreño P.García C.Pulido FJ. J. Org. Chem. 2001, 66: 7723 -
23a
Corey EJ.Staas DD. J. Am. Chem. Soc. 1998, 120: 3526 -
23b
Molander GA.Shubert DC. J. Am. Chem. Soc. 1987, 109: 576 -
24a
Wang D.Chan T.-H. J. Chem. Soc., Chem. Commun. 1984, 1273 -
24b
Armstrong RJ.Weiler L. Can. J. Chem. 1986, 64: 584 -
24c
Tan TS.Mather AN.Procter G.Davidson AH. J. Chem. Soc., Chem. Commun. 1984, 585 -
24d
Overman LE.Renhowe PA. J. Org. Chem. 1994, 59: 4138 -
24e
Proctor G.Russell AT.Murphy PJ.Tan TS.Mather AN. Tetrahedron 1988, 44: 3953 -
24f
Molander GA.Andrews SW. J. Org. Chem. 1989, 54: 3114 - 25
Barbero A.Castreño P.Pulido FJ. Org. Lett. 2003, 5: 4045 - 27
Barbero A.Blanco Y.Pulido FJ. Chem. Commun. 2001, 1606
References
Pulido, F.; Barbero, A.; Castreño, P. manuscript in preparation
28Pulido, F.; Barbero, A.; Blanco, Y. manuscript in preparation
29Pulido, F.; Barbero, A.; Blanco, Y. manuscript in preparation