Subscribe to RSS
DOI: 10.1055/s-2004-816237
© Georg Thieme Verlag Stuttgart · New York
Clinical Application of Neuro-Navigation in a Series of Single Burr-Hole Procedures
Die klinische Anwendung der Neuronavigation in einer Serie von BohrlocheingriffenPublication History
Publication Date:
30 April 2004 (online)
Abstract
With recent developments in computer technology and the improvement of neuroimaging, modern optical neuro-navigation systems are increasingly being used in neurosurgery. In this study, we present our experience with 51 operations using a frameless optical navigation system in a variety of single burr-hole procedures. The procedures include neuroendoscopic surgery, frameless stereotactic biopsy, cyst aspiration and catheter placement. Both the VectorVision and the VectorVision2 neuro-navigation systems (BrainLab AG, Munich, Germany) were used. The reliability and accuracy of the neuro-navigation system, postoperative complications and the clinical usefulness of image-guidance were analyzed. The navigation system worked properly in all 51 neurosurgical cases. Exact planning of the approach and determination of the ideal trajectory were possible in all cases. The mean registration error of the system, given as a computer-calculated value, was 2.1 mm (0.4-3.1 mm). Postoperative clinical evaluations and imaging were performed on every patient in order to confirm the success of the surgical procedure. All patients recovered well and without any postoperative complications. We conclude that image guidance in single burr-hole procedures provides a high degree of accuracy in lesion targeting, permits good anatomical orientation and minimizes brain trauma. The navigation system has proven to be a helpful tool since it increases the safety of single burr-hole procedures.
Zusammenfassung
Optische Navigationssysteme werden zunehmend zur Planung und Durchführung neurochirurgischer Operationen angewendet. Wir berichten in diesem Beitrag über unsere Erfahrungen mit einem optischen Neuronavigationsgerät bei insgesamt 51 Patienten. Jede der Operationen wurde über einen einfachen Bohrlochzugang durchgeführt. Die Eingriffe umfassten neuroendoskopische Operationen, rahmenlos geführte Biopsien, Zystenpunktionen und Katheteranlagen. Sowohl das VectorVision als auch das VectorVision2-System der Fa. Brainlab AG, München, wurden eingesetzt. Postoperative Komplikationen sowie Zuverlässigkeit, Genauigkeit und klinischer Nutzen der Neuronavigation wurden analysiert. Der optimale Vektor zur Zielregion konnte in allen Fällen genau bestimmt werden. Die errechnete Genauigkeit der Systeme lag bei 2,1 mm (0,4-3,1 mm). Sowohl die postoperativ durchgeführte Bildgebung als auch die klinische Untersuchung dokumentierten den Operationserfolg. Es traten keine postoperativen Komplikationen auf. Diese Studie belegt, dass die Neuronavigation ein äußerst hilfreiches Instrument ist.
Key words
Frameless stereotaxy - neuroendoscopy - neuro-navigation - single burr-hole procedures
Schlüsselwörter
Bohrloch-Trepanation - Neuroendoskopie - Neuronavigation - rahmenlose Stereotaxie
References
- 1 Alberti O, Riegel T, Hellwig D, Bertalanffy H. Frameless navigation and endoscopy. J Neurosurg. 2001; 95 541-543
- 2 Broggi G, Dones I, Ferroli P, Franzini A, Servello D, Duca S. Image guided neuroendoscopy for third ventriculostomy. Acta Neurochir (Wien). 2000; 142 893-899
- 3 Choudhury A R. CT measurement of the ventricular catheter length. Technical note. Br J Neurosurg. 1993; 7 542-544
- 4 Hellwig D, Riegel T, Bertalanffy H. Neuroendoscopic techniques in treatment of intracranial lesions. Min Invas Ther & Allied Technol. 1998; 7 123-135
-
5 Hellwig D, Bauer B L, Riegel T, Schmideck H H, Sweet W H. Surgical management of intracranial arachnoid, suprasellar, and Rathke’s cleft cysts. In: Schmidek HH, Sweet WH (eds). Operative Neurosurgical Techniques. 4th ed. Vol. 1. W. B. Saunders Company 2000; pp. 513-532
- 6 Dorward N L, Alberti O, Palmer J D, Kitchen N D, Thomas D GT. Accuracy of true frameless stereotaxy: in vivo measurement and laboratory phantom studies. Technical note. J Neurosurg. 1999; 90 160-168
- 7 Dorward N L, Alberti O, Velani B, Gerritsen F A, Harkness W FJ, Kitchen N D, Thomas D GT. Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation. J Neurosurg. 1998; 88 656-662
- 8 Dorward N L, Alberti O, Zhao J, Dijkstra A, Buurman J, Palmer J D, Hawkes D, Thomas D GT. Interactive image-guided neuroendoscopy: development and early clinical experience. Minim Invasive Neurosurg. 1998; 41 31-34
- 9 Doward N L, Paleologos T S, Alberti O, Thomas D GT. The advantages of frameless stereotactic biopsy over frame-based biopsy. Br J Neurosurg. 2002; 16 110-118
- 10 Gil Z, Siomin V, Beni-Adani L, Sira L B, Constantini S. Ventricular catheter placement in children with hydrocephalus and small ventricles: the use of a frameless neuronavigation system. Child's Nerv Syst. 2002; 18 26-29
- 11 Golfinos J G, Fitzpatrick B C, Smith L R, Spetzler R F. Clinical use of a frameless stereotactic arm: results of 325 cases. J Neurosurg. 1995; 83 197-205
- 12 Grunert P, Espinosa J, Busert C, Günthner M, Filippi R, Farag S, Hopf N. Sterotactic biopsies guided by an optical navigation system: Technique and clinical experience. Minim Invasive Neurosurg. 2002; 45 11-15
- 13 Gumprecht H K, Widenka D C, Lumenta C B. BrainLab VectorVision neuronavigation system: technology and clinical experiences in 131 cases. Neurosurgery. 1991; 44 97-104
- 14 Hellwig D, Bauer B L, Schulte M, Gatscher S, Riegel T, Bertalanffy H. Neuroendoscopic treatment for colloid cysts of the third ventricle: The experience of a decade. Neurosurgery. 2003; 52 525-532
- 15 Hopf N J, Grunert P, Darabi K, Busert C, Bettag M. Frameless neuronavigation applied to endoscopic neurosurgery. Minim Invasive Neurosurg. 1999; 42 187-193
- 16 Kaus M, Steinmeier R, Sporer T, Ganslandt O, Fahlbusch R. Technical accuracy of a neuronavigation system measured with a high-precision mechanical micromanipulator. Neurosurgery. 1997; 41 1431-1437
- 17 Keski S I, Ceviker N, Baykaner K, Alp H. Index for optimum ventricular catheter length. Technical note. J Neurosurg. 1991; 75 152-153
- 18 Kitchen N D, Lemieux L, Thomas D GT. Accuracy in frame-based and frameless stereotaxy. Stereotact Funct Neurosurg. 1993; 61 195-206
- 19 Korinth M C, Weinzierl M R, Krings T, Gilsbach J M. Occurrence and therapy of space-occupying cystic lesions after brain tumor surgery. Zentralbl Neurochir. 2001; 62 87-92
- 20 Kosugi Y, Watanabe E, Goto J. An articulated neurosurgical navigation system using MRI and CT images IEEE Trans. Biomed Eng. 1998; 35 147-152
- 21 Laborde G, Gilsbach J, Harders A, Klimek L, Moesges R, Krybus W. Computer assisted localizer for planning of surgery and intra-operative orientation. Acta Neurochir (Wien). 1992; 119 166-170
- 22 Maciunas R J, Galloway R L, Latimer J, Cobb C, Zaccharias E, Moore A, Mandava V R. An independent application accuracy evaluation of stereotactic frame systems. Stereotact Funct Neurosurg. 1992; 58 103-107
- 23 McCallum J. Combined frameless stereotaxy and neuroendoscopy in placement of intracranial shunt catheters. Pediatr Neurosurg. 1997; 26 127-129
- 24 Muacevic A, Muller A. Imaged-guided endoscopic ventriculostomy with a new frameless armless neuronavigation system. Comput Aided Surg. 1999; 4 87-92
- 25 Riegel T, Alberti O, Hellwig D, Bertalanffy H. Operative management of third ventriculostomy in cases of thickened, non-translucent third ventricular floor: Technical note. Minim Invasive Neurosurg. 2001; 44 65-69
- 26 Riegel T, Hellwig D, Bauer B L, Mennel H D. Endoscopic anatomy of the third ventricle. Acta Neurochir Suppl (Wien). 1994; 61 54-56
- 27 Rhoten R L, Luciano M G, Barnett G H. Computer-assisted endoscopy for neurosurgical procedures: technical note. Neurosurgery. 1997; 40 632-638
- 28 Roberts D W, Hartov A, Kennedy F E, Miga M I, Paulsen K D. Intraoperative brain shift and deformation: A quantitative analysis of cortical displacement in 28 cases. Neurosurgery. 1998; 43 749-758
- 29 Roberts D W, Strohbehn J W, Hatch J F, Murray W, Kettenberger H. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg. 1986; 65 545-549
- 30 Rohde V, Reinges M H, Krombach G A, Gilsbach J M. The combined use of image guided frameless stereotaxy and neuroendoscopy for the surgical management of occlusive hydrocephalus and intracranial cysts. Br J Neurosurg. 1998; 12 531-538
- 31 Savitz M H, Bobroff L M. Low incidence of delayed intracerebral hemorrhage secondary to ventriculoperitoneal shunt insertion. J Neurosurg. 1999; 91 32-34
- 32 Schroeder H W, Wagner W, Tschiltschke W, Gaab M R. Frameless neuronavigation in intracranial endoscopic neurosurgery. J Neurosurg. 2001; 94 72-79
- 33 Spetzger U, Laborde G, Gilsbach J M. Frameless neuronavigation in modern neurosurgery. Minim Invasive Neurosurg. 1995; 38 163-166
- 34 Steinmeier R, Rachinger J, Kaus M, Ganslandt O, Huk W, Fahlbusch R. Factors influencing the application accuracy of neuronavigation systems. Stereotact Funct Neurosurg. 2000; 75 188-202
- 35 Sure U, Hellwig D, Bertalanffy H. Incorrect vector after calibration of surgical instrument for image-guidance: the problem and the solution: technical note. Minim Invasive Neurosurg. 2001; 44 88-91
- 36 Wagner W, Gaab M R, Schroeder H W, Piek J, Niendorf W R. Neuronavigation in the central area: Impact on different surgical steps related to the location of pathologic processes. Zentralbl Neurochir. 2000; 61 183-193
- 37 Wiesmann M, Mayer T E. Intracranial bleeding rates associated with two methods of external ventricular drainage. J Clin Neurosci. 2001; 8 126-128
- 38 Yamamoto M, Jimbo M, Hara M, Saito I, Mori K. Gamma knife radiosurgery for arteriovenous malformations: long-term follow-up results focusing on complications occurring more than 5 years after irradiation. Neurosurgery. 1996; 38 906-914
M. D., M. Sc. Wuttipong Tirakotai
Neurochirurgische Klinik der Philipps-Universität Marburg
Baldingerstrasse
35033 Marburg
Germany
Phone: +49/64 21-2 86 64 47
Fax: +49/64 21-2 86 64 15
Email: riegel@med.uni-marburg.de