Subscribe to RSS
DOI: 10.1055/s-2004-817909
Georg Thieme Verlag Stuttgart KG · New York
Evolution of Carnivory in Lentibulariaceae and the Lamiales
Publication History
Publication Date:
12 July 2004 (online)
Abstract
As a basis for analysing the evolution of the carnivorous syndrome in Lentibulariaceae (Lamiales), phylogenetic reconstructions were conducted based on coding and non-coding chloroplast DNA (matK gene and flanking trnK intron sequences, totalling about 2.4 kb). A dense taxon sampling including all other major lineages of Lamiales was needed since the closest relatives of Lentibulariaceae and the position of “proto-carnivores” were unknown. Tree inference using maximum parsimony, maximum likelihood, and Bayesian approaches resulted in fully congruent topologies within Lentibulariaceae, whereas relationships among the different lineages of Lamiales were only congruent between likelihood and Bayesian optimizations. Lentibulariaceae and their three genera (Pinguicula, Genlisea, and Utricularia) are monophyletic, with Pinguicula being sister to a Genlisea-Utricularia clade. Likelihood and Bayesian trees converge on Bignoniaceae as sister to Lentibulariaceae, albeit lacking good support. The “proto-carnivores” (Byblidaceae, Martyniaceae) are found in different positions among other Lamiales but not as sister to the carnivorous Lentibulariaceae, which is also supported by Khishino-Hasegawa tests. This implies that carnivory and its preliminary stages (“proto-carnivores”) independently evolved more than once among Lamiales. Ancestral states of structural characters connected to the carnivorous syndrome are reconstructed using the molecular tree, and a hypothesis on the evolutionary pathway of the carnivorous syndrome in Lentibulariaceae is presented. Extreme DNA mutational rates found in Utricularia and Genlisea are shown to correspond to their unusual nutritional specialization, thereby hinting at a marked degree of carnivory in these two genera.
Key words
Carnivorous plants - Lamiales - Lentibulariaceae - matK-trnK - molecular phylogeny - mutation rates.
References
- 1 Albach D. C., Soltis P. S., Soltis D. E., Olmstead R. G.. Phylogenetic analysis of asterids based on sequences of four genes. Annals of the Missouri Botanical Garden. (2001); 88 163-212
- 2 Albert V. A., Williams S. E., Chase M. W.. Carnivorous plants: Phylogeny and structural evolution. Science. (1992); 257 1491-1495
- 3 Barraclough T. G., Savolainen V.. Evolutionary rates and species diversity in flowering plants. Evolution. (2001); 55 677-683
- 4 Barthlott W., Porembski S., Fischer E., Gemmel B.. First protozoa-trapping plant found. Nature. (1998); 392 447
- 5 Borsch T.. Phylogeny and Evolution of the genus Nymphaea (Nymphaeaceae). PhD Thesis. Bonn; University of Bonn (2000)
- 6 Borsch T., Hilu K. W., Quandt D., Wilde V., Neinhuis C., Barthlott W.. Non-coding plastid trnT-trnF sequences reveal a well supported phylogeny of basal angiosperms. Journal of Evolutionary Biology. (2003); 16 558-576
- 7 Bremer B., Bremer K., Heidari N., Erixon P., Olmstead R. G.. Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Molecular Phylogenetics and Evolution. (2002); 24 274-301
- 8 Britten R. J.. Rates of DNA sequence evolution differ between taxonomic groups. Science. (1986); 231 1393-1398
- 9 Casper S. J.. Monographie der Gattung Pinguicula L. Bibliotheca Botanica. (1966); 127/128 1-209
- 10 Darwin C.. Insectivorous Plants. London; Murray (1875)
- 11 Dixon K. W., Pate J. S., Bailey W. J.. Nitrogen nutrition of the tuberous sundew Drosera erythrorhiza Lindl. with special reference to catch of arthropod fauna by its glandular leaves. Australian Journal of Botany. (1980); 28 283-297
-
12 Doyle J. A., Bygrave P., Le Thomas A..
Implications of molecular data for pollen evolution in Annonaceae. Harley, M. M., Morton, C. M., and Blackmore, S., eds. Pollen and Spores: Morphology and Biology. Kew; Royal Botanical Gardens (2000): 259-284 - 13 Farris J. S., Albert V. A., Källersjö M., Lipscomb D., Kluge A. G.. Parsimony Jackknifing outperforms Neighbor-Joining. Cladistics. (1996); 12 99-124
- 14 Fischer E., Porembski S., Barthlott W.. Revision of the genus Genlisea (Lentibulariaceae) in Africa and Madagascar with notes on ecology and phytogeography. Nordic Journal of Botany. (2000); 20 291-318
- 15 Fromm-Trinta E.. Tayloria Fromm-Trinta - Nova Seca do genere Genlisea St.-Hil. Boletin Museum Nacional de Rio de Janeiro, Botanica. (1977); 44 1-4
- 16 Hilu K. W., Liang H.. The matK gene: Sequence variation and application in plant systematics. American Journal of Botany. (1997); 87 830-839
- 17 Hilu K. W., Borsch T., Müller K., Soltis D. E., Soltis P. S., Savolainen V., Chase M. W., Powell M. P., Alice L. A., Evans R., Sauquet H., Neinhuis C., Slotta T. A. B., Rohwer J. G., Campbell C. S., Chatrou L. W.. Angiosperm phylogeny based on matK sequence information. American Journal of Botany. (2003); 90 1758-1776
- 18 Huelsenbeck J. P.. Performance of phylogenetic methods in simulation. Systematic Biology. (1995); 44 17-48
- 19 Huelsenbeck J. P., Ronquist F.. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics. (2001); 17 754-755
- 20 Huelsenbeck J. P., Larget B., Miller R. E., Ronquist F.. Potential applications and pitfalls of Bayesian inference of phylogeny. Systematic Biology. (2002); 51 673-688
- 21 Jobson R. W., Albert V. A.. Molecular rates parallel diversification contrasts between carnivorous plant sister lineages. Cladistics. (2002); 18 127-136
- 22 Johnson L. A., Soltis D. E.. Phylogenetic inference in Saxifragaceae s.str. and Gilia (Polemoniaceae) using matK sequences. Annals of the Missouri Botanical Garden. (1995); 82 149-175
-
23 Juniper B. E..
The Path to Plant Carnivory. Juniper, B. E. and Southwood, R., eds. Insects and the Plant Surface. London; Echvard Annald (1986) - 24 Juniper B. E., Robins R. J., Joel D. M.. The Carnivorous Plants. London; Academic Press (1989)
- 25 Kelchner S. A.. The evolution of noncoding chloroplast DNA and its application in plant systematics. Annals of the Missouri Botanical Garden. (2000); 87 482-498
- 26 Kishino H., Hasegawa M.. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular Evolution. (1989); 29 170-179
- 27 Kron K. A., Fuller R., Crayn D. M., Gadek P. A., Quinn C. J.. Phylogenetic relationships of epacrids and vaccinioids (Ericaceae s.l.) based on matK sequence data. Plant Systematics and Evolution. (1999); 218 55-65
- 28 Legendre L.. The genus Pinguicula L. (Lentibulariaceae): an overview. Acta Botanica Gallica. (2000); 147 77-95
-
29 Lewis P. O..
Maximum likelihood as an alternative tp parsimony for inferring phylogeny using nucleotide sequence data. Soltis, D. S. et al., eds. Molecular Systematics of Plants II: DNA Sequencing. Boston; Kluwer (1998): 132-163 - 30 Liang H. P., Hilu K. W.. Application of the matK gene to grass systematics. Canadian Journal of Botany. (1996); 74 125-134
- 31 Lloyd F. E.. Carnivorous plants. In Chronica Botanica Co. Massachusetts; Waltham (1942)
-
32 Lüttge U..
Ecophysiology of carnivorous plants. Lange, O. L. et al., eds. Physiological Plant Ecology III. Berlin, Heidelberg; Springer (1983) - 33 Maddison W. P., Maddison D. R.. MacClade. Sunderland, MA; Sinauer (1992)
- 34 Marschner H.. Mineral Nutrition of Higher Plants, 2nd ed. New York; Academic Press (1995)
- 35 Martin A. P., Palumbi S. R.. Body size, metabolic rate, generation time, and the molecular clock. Proceedings of the National Academy of Sciences USA. (1993); 90 4087-4091
- 36 Meimberg H., Wistuba A., Dittrich P., Heubl G.. Molecular phylogeny of Nepenthaceae based on cladistic analysis of plastid trnK intron sequence data. Plant Biology. (2001); 3 164-175
- 37 Mishler B. D.. The cladistic analysis of molecular and morphological data. American Journal of Physical Anthropology. (1994); 94 143-156
- 38 Mohr G., Perlman P. S., Lambowitz A. M.. Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Research. (1993); 21 4991-4997
- 39 Müller J., Müller K.. QuickAlign: a new alignment editor. Plant Mol. Biol. Reporter. (2003); 21 5
- 40 Müller K.. PRAT: Computer program for phylogenetic analysis of large data sets. Bonn; Program distributed by the author (2002)
- 43 Neuhaus H., Link G.. The chloroplast tRNALys (UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase related polypeptide. Current Genetics. (1987); 11 251-257
-
44 Nickrent D. L., DePamphilis C. W., Wolfe A. D..
Molecular phylogenetic and evolutionary studies of parasitic plants. Soltis, D. S. et al., eds. Molecular Systematics of Plants II: DNA Sequencing. Boston; Kluwer (1998): 211-241 - 45 Nixon K. C.. The Parsimony Ratchet, a new method for rapid parsimony analysis. Cladistics. (1999); 15 407-414
- 46 Olmstead R. G., Reeves P. A.. Evidence for the polyphyly of the Scrophulariaceae based on chloroplast rbcL and ndhF sequences. Annals of the Missouri Botanical Garden. (1995); 82 176-193
- 47 Olmstead R. G., DePamphilis C. W., Wolfe A. D., Young N. D., Elisons W. J., Reeves P. A.. Disintegration of the Scrophulariaceae. American Journal of Botany. (2001); 88 348-361
- 48 Oxelman B., Backlund M., Bremer B.. Relationships of the Buddlejaceae s.l. investigated using parsimony jackknife and branch support analysis of chloroplast ndhF and rbcL sequence data. Systematic Botany. (1999); 24 164-182
- 49 Posada D., Crandall K. A.. Modeltest: testing the model of DNA substitution. Bioinformatics. (1998); 14 817-818
- 50 Pringsheim E. G., Pringsheim O.. Kleiner Beitrag zur Physiologie von Utricularia. . Zeitschrift für Pflanzenphysiologie. (1967); 57 1-10
- 52 Rutishauser R., Sattler R.. Complementary and heuristic value of contrasting models in structural botany. III. Case study on shoot-like “leaves” and leave-like “shoots” in Utricularia macrorhiza und U. purpurea (Lentibulariaceae). Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie. (1989); 111 121-137
- 53 Savolainen V., Chase M. W., Hoot S. B., Morton C. M., Soltis D. E., Bayer C., Fay M. F., De Bruijn A. Y., Sullivan S., Qiu Y.-L.. Phylogenetics of flowering plants based upon a combined analysis of plastid atpB and rbcL gene sequences. Systematic Biology. (2000); 49 306-362
- 54 Schnepf E.. Struktur und Funktion der Golgi-Elemente in Insektivoren-Drüsen. Berichte der Deutschen Botanischen Gesellschaft. (1961); 74 269
- 55 Seine R., Porembski S., Balduin M., Theisen I., Wilbert N., Barthlott W.. Different prey strategies of terrestrial and aquatic species in the carnivorous genus Utricularia (Lentibulariaceae). Botanische Jahrbücher für Systematik. (2002); 124 71-76
- 56 Soltis D. E., Soltis P. S., Chase M. W., Mort M. E., Albach D. C., Zanis M., Savolainen V., Hahn W. H., Hoot S. B., Fay M. F., Axtell M., Swensen S. M., Prince L. M., Kress W. J., Nixon K. C., Farris J. S.. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnaean Society. (2000); 133 381-461
- 57 Spomer G.. Evidence of protocarnivorous capabilities in Geranium viscosisimum and Potentilla arguta and other sticky plants. International Journal of Plant Sciences. (1999); 160 98-101
- 58 Steele K. P., Vilgalys R.. Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the plastid gene matK. . Systematic Botany. (1994); 19 126-142
- 59 Suzuki Y., Glazko G. V., Nei M.. Overcredibility of molecular phylogenetics obtained by Bayesian phylogenetics. Proceedings of the National Academy of Sciences, USA. (2002); 99 16138-16143
-
60 Swofford D. L., Olsen G. J., Waddell P. J., Hillis D..
Phylogenetic inference. Hillis, D. M., Moritz, C., and Mable, B. K., eds. Molecular Systematics, 2nd edition. Sunderland, MA; Sinauer Associates (1996): 407-514 - 61 Swofford D. L.. PAUP*. Phylogenetic Analysis Using Parsimony (*and other Methods). Sunderland; Sinauer Associates (1998)
- 62 Taylor P.. The Genus Utricularia: A Taxonomic Monograph. London; Kew Bulletin Additional Series XIV (1989)
- 63 Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research. (1997); 24 4876-4882
- 64 Vogel J., Hübschmann T., Börner T., Hess W. R.. Splicing and intron-internal RNA editing of trnK-matK transcripts in barley plastids: support for matK as an essential splice factor. Journal of Molecular Biology. (1997); 270 179-187
- 65 Wu C. I., Li W. H.. Evidence for higher rates of nucleotide substitution in rodents than in man. Proceedings of the National Academy of Sciences, USA,. (1985); 82 1741-1745
- 66 Young N. D., Steiner K. E., DePamphilis C. W.. The evolution of parasitism in Scrophulariaceae/Orobanchaceae: Plastid gene sequences refute an evolutionary transition series. Annals of the Missouri Botanical Garden. (1999); 86 876-893
- 67 Young N. D., DePamphilis C. W.. Purifying selection detected in the plastid gene matK and flanking ribozyme regions within a group II intron of nonphotosynthetic plants. Molecular Biology and Evolution. (2000); 17 1933-1941
- 68 Ziegler H., Lüttge U.. Über die Resorption von 14C-Glutaminsäure durch sezernierende Nektarien. Naturwissenschaften. (1959); 46 176-177
K. Müller
Nees-Institut für Biodiversität der Pflanzen
Friedrich-Wilhelms-Universität Bonn
Meckenheimer Allee 170
53115 Bonn
Germany
Email: kaimueller@uni-bonn.de
Section Editor: K. Clay