Subscribe to RSS
DOI: 10.1055/s-2004-817981
© Georg Thieme Verlag KG Stuttgart · New York
CABG and Bone Marrow Stem Cell Transplantation after Myocardial Infarction[*]
Publication History
Received April 23, 2003
Publication Date:
11 June 2004 (online)
![](https://www.thieme-connect.de/media/thoracic/200403/lookinside/thumbnails/10.1055-s-2004-817981-1.jpg)
Abstract
Objective: Bone marrow-derived adult stem cells may be able to regenerate infarcted myocardium. We initiated a phase-I study of autologous stem cell transplantation in patients undergoing coronary artery bypass grafting. Methods: Inclusion criteria were: acute myocardial infarction > 10 days ago; presence of a distinct area of infarcted and akinetic myocardium; CABG indicated to treat ischemia of other LV wall areas. Stem cells were isolated from bone marrow using a ferrite-conjugated AC133 antibody, and were injected in the infarct border zone during the CABG operation. Results: To date, 12 patients were treated without major complications. There is no evidence of new ventricular arrhythmia or neoplasia. Scintigraphic imaging demonstrated significantly improved local perfusion in the stem cell-treated infarct area. LV dimensions (LVEDV 140 ± 38 ml vs. 124 ± 30 ml, p = 0.004, paired t-test) and LV ejection fraction (39.7 ± 9 % vs. 48.7 ± 6 %, p = 0.007) have improved. Conclusions: Bone marrow stem cell transplantation for myocardial regeneration can be safely performed in humans. There is evidence of improved revascularization and contractility of infarct areas, but controlled studies are needed to clearly determine the clinical benefit.
Key words
Myocardial infarction - coronary artery bypass - stem cells - AC133 - angiogenesis
1 Presented at the 32nd Annual Meeting of the German Society for Thoracic and Cardiovascular Surgery, Leipzig, February 26, 2003
References
- 1 Orlic D, Kajstura J, Chimenti S. et al . Bone marrow cells regenerate infarcted myocardium. Nature. 2001; 410 701-705
- 2 Kocher A A, Schuster M D, Szabolcs M J. et al . Neovascularization of ischemic myocardium by human bone marrow-derived angioblasts prevents cardiomyocytes apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001; 7 430-436
- 3 Kamihata H, Matsubara H, Nishiue T. et al . Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation. 2001; 103 634-637
- 4 Shake J G, Gruber P J, Baumgartner W A. et al . Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg. 2002; 73 1919-1925
- 5 Tomita S, Mickle D AG, Weisel R D. et al . Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg. 2002; 123 1132-1140
- 6 Hamano K, Li T S, Kobayashi T. et al . Therapeutic angiogenesis induced by local autologous bone marrow cell implantation. Ann Thorac Surg. 2002; 73 1210-1215
- 7 Stamm C, Westphal B, Kleine H D. et al . Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet. 2003; 361 45-46
- 8 Menasche P, Hagege A A, Scorsin M. et al . Myoblast transplantation for heart failure. Lancet. 2001; 357 279-280
- 9 Makino S, Fukuda K, Miyoshi S. et al . Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999; 103 697-705
- 10 Toma C, Pittenger M F, Cahill K S, Byrne B J, Kessler P D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002; 105 93-98
- 11 Takakura N, Watanabe T, Suenobu S. et al . A role for hematopoietic stem cells in promoting angiogenesis. Cell. 2000; 102 199-209
- 12 Isner J M, Kalka C, Kawamoto A, Asahara T. Bone marrow as a source of endothelial cells for natural and iatrogenic vascular repair. Ann N Y Acad Sci. 2001; 953 75-84
- 13 Asahara T, Masuda H, Takahashi T. et al . Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological revascularization. Circ Res. 1999; 85 221-228
- 14 Murayama T, Tepper O M, Silver M. et al . Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol. 2002; 30 967-972
- 15 Hamano K, Nishida M, Hirata K. et al . Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: Clinical trial and preliminary results. Jpn Circ J. 2001; 65 845-847
- 16 Tateishi-Yuyama E, Matsubara H, Murohara T. et al . Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002; 360 427-435
- 17 Peichev M, Naiyer A J, Pereira D. et al . Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000; 95 952-958
- 18 Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker P H, Verfaillie C M. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest. 2002; 109 337-346
- 19 Bhatia M. AC133 expression in human stem cells. Leukemia. 2001; 15 1685-1688
- 20 Kuci S, Wessels J T, Buhring H J. et al . Identification of a novel class of human adherent CD34- stem cells that give rise to SCID-repopulating cells. Blood. 2003; 101 869-876
1 Presented at the 32nd Annual Meeting of the German Society for Thoracic and Cardiovascular Surgery, Leipzig, February 26, 2003
Prof. Dr. Gustav Steinhoff
Universität Rostock
Klinik für Herzchirurgie
Schillingallee 35
18057 Rostock
Germany
Phone: + 493814946101
Fax: + 49 38 14 94 61 02
Email: gustav.steinhoff@med.uni-rostock.de