Minim Invasive Neurosurg 2004; 47(2): 79-85
DOI: 10.1055/s-2004-818450
Original Article
© Georg Thieme Verlag Stuttgart · New York

Vibrography: First Experimental Results in Swine Brains

M.  Scholz1 , B.  Fricke3 , P.  Mönnings1 , B.  Brendel2 , K.  Schmieder1 , S.  Siebers2 , M.  von Düring3 , H.  Ermert2 , A.  Harders1
  • 1Department of Neurosurgery, Ruhr University Bochum, Bochum, Germany
  • 2Institute of High Frequency Engineering, Ruhr University Bochum, Bochum, Germany
  • 3Department of Neuroanatomy, Ruhr University Bochum, Bochum, Germany
Further Information

Publication History

Publication Date:
18 July 2005 (online)

Abstract

Object: The aim of this study was to determine whether vibrography, an ultrasound-based real-time strain imaging method for registering the elastic properties of tissue, is superior to conventional ultrasound imaging techniques for detecting low-contrast space-occupying lesions in brain tissue and for delineating the boundaries between such lesions and the surrounding tissue.

Methods: As our experimental model we used swine brains taken from freshly slaughtered pigs. After injecting agarose into these brains at different depths, we compared both the conventional ultrasonographic images and the elastographic images of the region of interest with the corresponding anatomical brain sections.

Results: In 83.6 % of the experiments, it was possible to detect the polymerized agarose in the brain tissue with vibrographic techniques. In 17 experiments agarose lesions which were not detectable by ultrasound were visualized via vibrography. Furthermore, statistical analysis revealed that elastography is a more precise tool than conventional ultrasound for determining lesion size.

Conclusion: These findings indicate that vibrography is a promising real-time imaging method with numerous potential applications in the field of neurosurgery. Visualization of the elastic properties provides the neurosurgeon with additional data on the lesion and the boundary between the lesion and the surrounding tissue.

References

  • 1 Ophir J, Cespedes I, Ponnekanti H, Yazdi Z, Li X. Elastography: A quantitative method for imaging the elasticity of biological tissues.  Ultrasonic Imaging. 1991;  13 113-134
  • 2 Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R. Quantification of, visualization of, and compensation for, brain shift using intraoperative magnetic resonance imaging.  Neurosurgery. 2000;  47 1070-1079
  • 3 Zakhary R, Keles G E, Berger M S. Intraoperative imaging techniques in the treatment of brain tumors.  Curr Opin Oncol. 1999;  11 152-156
  • 4 Fahlbusch R, Ganslandt O, Nimsky C. Intraoperative imaging with open magnetic resonance imaging and neuronavigation.  Childs Nerv Syst. 2000;  16 829-831
  • 5 Kollias S S, Bernays R L. Interactive magnetic resonance imaging-guided management of intracranial cystic lesions by using an open magnetic resonance imaging system.  J Neurosurg. 2001;  95 15-23
  • 6 Gronningsaeter A, Kleven A, Ommedal S, Aarseth T E, Lie T, Lindseth F, Lango T, Unsgard G. Sono Wand, an ultrasound-based neuronavigation system.  Neurosurgery. 2000;  47 1373-1379
  • 7 Unsgaard G, Ommedal S, Muller T, Gronningsaeter A, Nagelhus Hernes T A. Neuronavigation by intraoperative three-dimensional ultrasound: initial experience during brain tumor resection.  Neurosurgery. 2002;  50 804-812
  • 8 Pesavento A, Perrey D, Krueger M, Ermert H. A time efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation. IEEE Trans on Ultrason, Ferroelect & Freq.  Contr. 1999;  46 1057-1067
  • 9 Pesavento A, Lorenz A, Siebers S, Ermert H. New real-time strain imaging concepts using diagnostic ultrasound.  Phys Med Biol. 2000;  45 1423-1435
  • 10 Stafford R J, Kallel F, Price R E, Cromeens D M, Krouskop T A, Hazle J D, Ophir J. Elastographic imaging of thermal lesions in soft tissue: a preliminary study in vitro.  Ultrasound in Med & Biol. 1998;  24 1449-1458
  • 11 De Korte C L, Pasterkamp G, Steen A FW van der, Woutman H A, Bom N. Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro.  Circulation. 2000;  8 617-623
  • 12 Hiltawsky K M, Krüger M, Starke C, Heuser L, Ermert H, Jensen A. Freehand ultrasound elastography of breast lesion: clinical results.  Ultrasound in Med & Biol. 2001;  27 1461-1469
  • 13 Kallel F, Prihoda C D, Ophir J. Contrast-transfer efficiency for continuously varying tissue moduli: simulation and phantom validation.  Ultrasound in Med & Biol. 2001;  27 1115-1125
  • 14 Varghese T, Ophir J, Krouskop T A. Nonlinear stress-strain relationship in tissue and their effect on the contrast-to-noise ratio in elastograms.  Ultrasound in Med & Biol. 2000;  26 839-851
  • 15 Gering D T, Nabavi A, Kikinis R, Hata N, O'Donnell L J, Grimson W E, Jolesz F A, Black P M, Wells 3rd W M. An integrated visualization system for surgical planning and guidance using image fusion and an open MR.  J Magn Reson Imaging. 2001;  13 967-975
  • 16 Jannin P, Fleig O J, Seigneuret E, Groca C, Morandi X, Scarabin J M. A data fusion environment for multimodal and multi-informational neuronavigation.  Comput Aided Surg. 2000;  5 1-10
  • 17 Porter B C, Rubens D J, Strang J G, Smith J, Totterman S, Parker K J. Three-dimensional registration and fusion of ultrasound and MRI using major vessels as fiducial markers.  IEEE Trans Med Imaging. 2001;  20 354-359
  • 18 Sure U, Alberti O, Petermeyer M, Becker R, Bertalanffy H. Advanced image-guided skull base surgery.  Surg Neurol. 2000;  53 563-572

Martin  Scholz,M. D., Ph. D. 

Department of Neurosurgery · Ruhr-University Bochum · Knappschaftskrankenhaus

In der Schornau 23-25

44892 Bochum

Germany

Phone: +49-234-299-0

Fax: +49-234-299-3609

Email: martin.scholz@ruhr-uni-bochum.de