Zusammenfassung
Das Prostatakarzinom (PCa) wie auch andere Tumoren exprimieren Antigene, die als Angriffspunkte für eine spezifische Immuntherapie dienen können. Spezielle antigenpräsentierende Zellen (z. B. dendritische Zellen) bieten dabei dem Immunsystem die Antigene an, so dass eine entsprechende Antwort ausgelöst wird. Sehr effektiv gehen dabei zytotoxische T-Zellen (sog. Killerzellen) gegen die Antigene und somit gegen das entsprechende Gewebe respektive den Tumor vor. Cancer Testis Antigene (CTA) werden in verschiedenen menschlichen Karzinomen exprimiert, außer im Hoden aber nicht in normalem Gewebe. Sie eignen sich damit ideal für eine spezifische Tumor-Immuntherapie. Wir untersuchten, ob einige dieser CTA (LAGE-1, PRAME, MAGE-C2, NY-ESO-1, SSX-2 und PAGE4) auch im Prostatakarzinom vorkommen. Dabei zeigte sich eine sehr heterogene Expression der CTA in verschiedenen PCa-Zelllinien oder PCa-Proben aus unserem Patientengut. Nur PAGE4 wies neben einer Expression in primären PCa und LnCaP-Zellen auch eine Expression in hormonabhängigen und -refraktären PCa-Proben auf, so dass es als mögliches Zielantigen zur Immuntherapie des PCa weiter evaluiert wird.
Abstract
Prostate cancer (PCa) like other tumors expresses antigens that may serve as target for specific immunotherapy. Special antigen-presenting cells (e. g., dendritic cells) are capable of generating tumor-specific immunity. Cytotoxic T-cells (killer cells) are very effective against antigens and, consequently, against the respective tissue or tumor. Cancer testis antigens (CTA) are expressed in various human cancers but, aside from the testicles, not in normal tissue. Therefore, they are suitable for a specific tumor immunotherapy. We looked at different CTA (LAGE-1, PRAME, MAGE-C2, NY-ESO-1, SSX-2 and PAGE4) and their occurrence in prostatic cancer. Expression of CTA in various PCa cell lines and PCa material from patients was very heterogeneous. Only PAGE4 was expressed in primary PCa and in LnCaP cells as well as in hormone-dependent and hormone-refractory PCa probes. We conclude that PAGE4 should be further evaluated as a potential target for immunotherapy of PCa.
Schlüsselwörter
Prostatakarzinom - Immuntherapie - Cancer Testis Antigen - dendritische Zellen
Key words
Prostatic cancer - immunotherapy - cancer testis antigens - dendritic cells
Literatur
1
Ashley D M, Faiola B, Nair S, Hale L P, Bigner D D, Gilboa E.
Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors.
J Exp Med.
1997;
186 (7)
1177-1182
2
Austyn J M, Hankins D F, Larsen C P, Morris P J, Rao A S, Roake J A.
Isolation and characterization of dendritic cells from mouse heart and kidney.
J Immunol.
1994;
152 (5)
2401-2410
3
Banchereau J, Steinman R M.
Dendritic cells and the control of immunity.
Nature.
1998;
392 (6673)
245-252
4
Banchereau J, Schuler-Thurner B, Palucka A K, Schuler G.
Dendritic cells as vectors for therapy.
Cell.
2001;
106 (3)
271-274
5
Boczkowski D, Nair S K, Snyder D, Gilboa E.
Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo.
J Exp Med.
1996;
184 (2)
465-472
6
Brinkmann U, Vasmatzis G, Lee B, Yerushalmi N, Essand M, Pastan I.
PAGE-1, an X chromosome-linked GAGE-like gene that is expressed in normal and neoplastic prostate, testis, and uterus.
Proc Natl Acad Sci U S A.
1998;
95 (18)
10 757-10 762
7
Brossart P, Zobywalski A, Grunebach F, Behnke L, Stuhler G, Reichardt V L, Kanz L, Brugger W.
Tumor necrosis factor alpha and CD40 ligand antagonize the inhibitory effects of interleukin 10 on T-cell stimulatory capacity of dendritic cells.
Cancer Res.
2000;
60 (16)
4485-4492
8
Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A.
Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells.
Nature.
1997;
388 (6644)
782-787
9
Dannull J, Diener P A, Prikler L, Furstenberger G, Cerny T, Schmid U, Ackermann D K, Groettrup M.
Prostate stem cell antigen is a promising candidate for immunotherapy of advanced prostate cancer.
Cancer Res.
2000;
60 (19)
5522-5528
10
Dutoit V, Taub R N, Papadopoulos K P, Talbot S, Keohan M L, Brehm M, Gnjatic S, Harris P E, Bisikirska B, Guillaume P. et al .
Multiepitope CD8(+) T cell response to a NY-ESO-1 peptide vaccine results in imprecise tumor targeting.
J Clin Invest.
2002;
110 (12)
1813-1822
11
Eder J P, Kantoff P W, Roper K, Xu G X, Bubley G J, Boyden J, Gritz L, Mazzara G, Oh W K, Arlen P. et al .
A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer.
Clin Cancer Res.
2000;
6 (5)
1632-1638
12
Flamand V, Sornasse T, Thielemans K, Demanet C, Bakkus M, Bazin H, Tielemans F, Leo O, Urbain J, Moser M.
Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo.
Eur J Immunol.
1994;
24 (3)
605-610
13
Fong L, Engleman E G.
Dendritic cells in cancer immunotherapy.
Annu Rev Immunol.
2000;
18
245-273
14
Hsu F J, Benike C, Fagnoni F, Liles T M, Czerwinski D, Taidi B, Engleman E G, Levy R.
Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells.
Nat Med.
1996;
2 (1)
52-58
15
Iavarone C, Wolfgang C, Kumar V, Duray P, Willingham M, Pastan I, Bera T K.
PAGE4 is a cytoplasmic protein that is expressed in normal prostate and in prostate cancers.
Mol Cancer Ther.
2002;
1 (5)
329-335
16
La Motte R N, Sharpe A H, Bluestone J A, Mokyr M B.
Host B7 - 1 and B7 - 2 costimulatory molecules contribute to the eradication of B7 - 1-transfected P815 tumor cells via a CD8+ T cell-dependent mechanism.
J Immunol.
1999;
162 (8)
4817-4823
17
Ludewig B, McCoy K, Pericin M, Ochsenbein A F, Dumrese T, Odermatt B, Toes R E, Melief C J, Hengartner H, Zinkernagel R M.
Rapid peptide turnover and inefficient presentation of exogenous antigen critically limit the activation of self-reactive CTL by dendritic cells.
J Immunol.
2001;
166 (6)
3678-3687
18
Mach N, Dranoff G.
Cytokine-secreting tumor cell vaccines.
Curr Opin Immunol.
2000;
12 (5)
571-575
19
Mincheff M, Tchakarov S, Zoubak S, Loukinov D, Botev C, Altankova I, Georgiev G, Petrov S, Meryman H T.
Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a phase I/II clinical trial.
Eur Urol.
2000;
38 (2)
208-217
20
Morant R, Hsu Schmitz S F, Bernhard J, Thurlimann B, Borner M, Wernli M, Egli F, Forrer P, Streit A, Jacky E. et al .
Vinorelbine in androgen-independent metastatic prostatic carcinoma - a phase II study.
Eur J Cancer.
2002;
38 (12)
1626-1632
21
Muller S, Hanisch F G.
Recombinant MUC1 probe authentically reflects cell-specific O-glycosylation profiles of endogenous breast cancer mucin. High density and prevalent core 2-based glycosylation.
J Biol Chem.
2002;
277 (29)
26 103-26 112
22
Nair S K, Boczkowski D, Morse M, Cumming R I, Lyerly H K, Gilboa E.
Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA.
Nat Biotechnol.
1998;
16 (4)
364-369
23
Nestle F O, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D.
Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells.
Nat Med.
1998;
4 (3)
328-332
24
Nestle F O.
Dendritic cell vaccination for cancer therapy.
Oncogene.
2000;
19 (56)
6673-6679
25
Ochsenbein A F, Klenerman P, Karrer U, Ludewig B, Pericin M, Hengartner H, Zinkernagel R M.
Immune surveillance against a solid tumor fails because of immunological ignorance.
Proc Natl Acad Sci U S A.
1999;
96 (5)
2233-2238
26
Ochsenbein A F, Sierro S, Odermatt B, Pericin M, Karrer U, Hermans J, Hemmi S, Hengartner H, Zinkernagel R M.
Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction.
Nature.
2001;
411 (6841)
1058-1064
27
Ossevoort M A, Feltkamp M C, Veen K J van, Melief C J, Kast W M.
Dendritic cells as carriers for a cytotoxic T-lymphocyte epitope-based peptide vaccine in protection against a human papillomavirus type 16-induced tumor.
J Immunother Emphasis Tumor Immunol.
1995;
18 (2)
86-94
28
Pantuck A J vOA, Gitlitz B J. et al .
MUC-1-IL-2 gene therapy for advanced prostate cancer: phase I trial and clinical response associated systemic immune activation (abstract).
J Urol.
2000;
163(suppl)
158
29
Pardoll D M.
Cancer vaccines.
Nat Med.
1998;
4 (5 Suppl)
525-531
30
Pardoll D M.
Spinning molecular immunology into successful immunotherapy.
Nat Rev Immunol.
2002;
2 (4)
227-238
31
Pierre P, Turley S J, Gatti E, Hull M, Meltzer J, Mirza A, Inaba K, Steinman R M, Mellman I.
Developmental regulation of MHC class II transport in mouse dendritic cells.
Nature.
1997;
388 (6644)
787-792
32
Rea D, Havenga M J, Assem M van Den, Sutmuller R P, Lemckert A, Hoeben R C, Bout A, Melief C J, Offringa R.
Highly efficient transduction of human monocyte-derived dendritic cells with subgroup B fiber-modified adenovirus vectors enhances transgene-encoded antigen presentation to cytotoxic T cells.
J Immunol.
2001;
166 (8)
5236-5244
33
Reis e Sousa C, Stahl P D, Austyn J M.
Phagocytosis of antigens by Langerhans cells in vitro.
J Exp Med.
1993;
178 (2)
509-519
34
Romani N, Koide S, Crowley M, Witmer-Pack M, Livingstone A M, Fathman C G, Inaba K, Steinman R M.
Presentation of exogenous protein antigens by dendritic cells to T cell clones. Intact protein is presented best by immature, epidermal Langerhans cells.
J Exp Med.
1989;
169 (3)
1169-1178
35
Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch P O, Steinman R M, Schuler G.
Proliferating dendritic cell progenitors in human blood.
J Exp Med.
1994;
180 (1)
83-93
36
Rosenberg S A, Spiess P, Lafreniere R.
A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes.
Science.
1986;
233 (4770)
1318-1321
37
Sadanaga N, Nagashima H, Mashino K, Tahara K, Yamaguchi H, Ohta M, Fujie T, Tanaka F, Inoue H, Takesako K. et al .
Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas.
Clin Cancer Res.
2001;
7 (8)
2277-2284
38
Sallusto F, Lanzavecchia A.
Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha.
J Exp Med.
1994;
179 (4)
1109-1118
39
Sallusto F, Cella M, Danieli C, Lanzavecchia A.
Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products.
J Exp Med.
1995;
182 (2)
389-400
40
Sanda M G, Ayyagari S R, Jaffee E M, Epstein J I, Clift S L, Cohen L K, Dranoff G, Pardoll D M, Mulligan R C, Simons J W.
Demonstration of a rational strategy for human prostate cancer gene therapy.
J Urol.
1994;
151 (3)
622-628
41
Scanlan M J, Gure A O, Jungbluth A A, Old L J, Chen Y T.
Cancer/testis antigens: an expanding family of targets for cancer immunotherapy.
Immunol Rev.
2002;
188
22-32
42
Scholfield D P, Simms M S, Bishop M C.
MUC1 mucin in urological malignancy.
BJU Int.
2003;
91 (6)
560-566
43
Simons J W, Mikhak B, Chang J F, DeMarzo A M, Carducci M A, Lim M, Weber C E, Baccala A A, Goemann M A, Clift S M. et al .
Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer.
Cancer Res.
1999;
59 (20)
5160-5168
44
Slingluff C L.
Targeting unique tumor antigens and modulating the cytokine environment may improve immunotherapy for tumors with immune escape mechanisms.
Cancer Immunol Immunother.
1999;
48 (7)
371-373
45
Song W, Kong H L, Carpenter H, Torii H, Granstein R, Rafii S, Moore M A, Crystal R G.
Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity.
J Exp Med.
1997;
186 (8)
1247-1256
46
Specht J M, Wang G, Do M T, Lam J S, Royal R E, Reeves M E, Rosenberg S A, Hwu P.
Dendritic cells retrovirally transduced with a model antigen gene are therapeutically effective against established pulmonary metastases.
J Exp Med.
1997;
186 (8)
1213-1221
47
Steinman R M, Pope M.
Exploiting dendritic cells to improve vaccine efficacy.
J Clin Invest.
2002;
109 (12)
1519-1526
48
Wang R F, Rosenberg S A.
Human tumor antigens for cancer vaccine development.
Immunol Rev.
1999;
170
85-100
49
Wick M, Dubey P, Koeppen H, Siegel C T, Fields P E, Chen L, Bluestone J A, Schreiber H.
Antigenic cancer cells grow progressively in immune hosts without evidence for T cell exhaustion or systemic anergy.
J Exp Med.
1997;
186 (2)
229-238
50
Zinkernagel R M, Ehl S, Aichele P, Oehen S, Kundig T, Hengartner H.
Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity.
Immunol Rev.
1997;
156
199-209
51
Zitvogel L, Mayordomo J I, Tjandrawan T, DeLeo A B, Clarke M R, Lotze M T, Storkus W J.
Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines.
J Exp Med.
1996;
183 (1)
87-97
Dr. med. Ladislav Prikler
Klinik für Urologie · Kantonsspital
CH-9007 St. Gallen
Email: ladislav.prikler@kssg.ch