Zusammenfassung
Die Behandlung des Atemnotsyndroms Frühgeborener mit Surfactantpräparationen ist etablierter Standard in der neonatologischen Intensivtherapie. Natürliche Surfactantpräparationen enthalten neben einem Phospholipidgemisch im Wesentlichen die lipophilen assoziierten Proteine B und C (SP-B und SP-C). Beide Proteine werden überwiegend in Typ II-Zellen und Clara-Zellen, SP-B aber auch in Zellen des Gastrointestinaltrakts und der Tuba auditiva synthetisiert. SP-B wird auf Chromosom 2 über 11 Exons kodiert, SP-C auf Chromosom 8 über 6 Exons. Wesentliche transkriptionsfördernde Faktoren sind für beide Gene TTF-1 (thyroid-transcription factor 1), darüber hinaus für SP-B die Transkriptionsfaktoren SP-1 und SP-3. Eine vitale Funktion der Surfactantproteine B und C besteht in der Aufrechterhaltung der alveolären Oberflächeneigenschaften im Rahmen der physiologischen Lungenmechanik. Ein kompletter SP-B-Mangel durch homozygote Mutationen im SP-B-Gen (z. B. 121-ins 2-Mutation) führt zu einem schweren postnatalen respiratorischen Versagen, bedingt durch den Mangel an oberflächenwirksamem funktionellem Surfactant. Ein kompletter Mangel an SP-C führt im Säuglings- bis Erwachsenenalter in Abhängigkeit von bisher unklaren Krankheitsmodifikatoren zu einer chronischen interstitiellen Pneumonitis.
Neben den oberflächenspannungsreduzierenden Eigenschaften kommt dem SP-B eine immunologische Funktion im Sinne einer Interaktion mit verschiedenen proinflammatorischen zellulären Systemen sowie weiteren Inflammationsmediatoren zu, z. B. nach Hyperoxie. Ebenso ergeben sich erste Hinweise auf eine modulierende Wirkung inflammatorischer Reaktionen von Makrophagen durch SP-C. Die Oberflächenaktivität der lipophilen Surfactantproteine scheint in den Grundzügen geklärt zu sein, während ihre lokale immunologische und metabolische Aktivität weiterer Untersuchungen bedarf.
Abstract
Treatment of neonatal RDS in premature infants with intratracheal administration of natural surfactant has become gold standard therapy. Natural surfactant preparations mainly contain, apart from phospholipids, the surfactant associated proteins B and C (SP-B and SP-C). Both proteins are synthesized mainly in alveolar type-II cells and Clara-cells, SP-B, also in the gastrointestinal tract and the auditive tube. SP-B is encoded on chromosome 2 over a region with 11 exons, whereas the SP-C gene is localized on chromosome 8 in a region containing 6 exons. Transcription of both SP-B and SP-C is induced by TTF-1. Furthermore SP-1 and SP-3 are known as transcription factors for SP-B. The main function of SP-B and SP-C is to maintain physiologic surface properties enabeling adequate lung mechanics. A complete SP-B deficiency following homozygous mutations in the SP-B gene (e. g. 121-ins 2-mutation) therefore leads to severe respiratory failure postnatally, due to the lack of functional surfactant. On the other hand complete deficiency of SP-C causes chronic interstitial pneumonitis as well in infants as in adults depending on disease-modifiers yet unknown.
Besides the surface tension lowering property, SP-B reveals immunological functions regarding its interaction with different proinflammatory cellular systems as well as other inflammatory mediators, e. g. following hyperoxia. For SP-C first studies have described modulation of inflammatory reactions in macrophages, suggesting similar immune-modulatory effects. Whereas basic effects on lung mechanisms of both lipophilic surfactant proteins seem to be well understood, their immunologic local pulmonary functions and effects on surfactant metabolism require further investigations.
Schlüsselwörter
Surfactant-assoziiertes Protein B und C - immunologische Funktion - Oberflächenaktivität - neonatales Lungenversagen
Keywords
Surfactant-associated proteins B and C - immunologic function - surface activity - neonatal respiratory failure
Literatur
1
Von Neergaard K.
Neue Auffassungen über einen Grundbegriff der Atemmechanik. Die Retraktionskraft der Lunge, abhängig von der Oberflächenspannung in den Alveolen.
Z Gesamt Exp Med.
1929;
66
373-394
2
Avery M E, Mead J.
Surface properties in relation to atelectasis and hyaline membrane disease.
AMA J Dis Child.
1959;
97
517-23
3
Chu J, Clements J A, Cotton E K, Klaus M H, Sweet A Y, Tooley W H.
Neonatal pulmonary ischemia: clinical and physiological studies.
Pediatrics.
1967;
40
709-782
4
Robillard E, Alarie Y, Dagenais-Perusse P, Baril E, Guilbeault A.
Microaerosol Administration of Synthetic Beta-Gamma-Dipalmitoyl-L-Alpha-Lecithin in the Respiratory Distress Syndome: A Preliminary Report.
Can Med Assoc J.
1964;
90
55-7
5
Rüfer R, Stolz C.
[Inactivation of alveolar surface films by lowering the surface tension of the hypophase].
Pflugers Arch.
1969;
307
89-103
6
Fujiwara T, Maeta H, Chida S, Morita T, Watabe Y, Abe T.
Artificial surfactant therapy in hyaline-membrane disease.
Lancet.
1980;
1
55-9
7
Enhorning G, Shennan A, Possmayer F, Dunn M, Chen C P, Milligan J.
Prevention of neonatal respiratory distress syndrome by tracheal instillation of surfactant: a randomized clinical trial.
Pediatrics.
1985;
76
145-53
8
Hallman M, Merritt T A, Jarvenpaa A L, Boynton B, Mannino F, Gluck L ,. et al .
Exogenous human surfactant for treatment of severe respiratory distress syndrome: a randomized prospective clinical trial.
J Pediatr.
1985;
106
963-9
9
Gortner L.
Natural surfactant for neonatal respiratory distress syndrome in very premature infants: a 1992 update.
J Perinat Med.
1992;
20
409-19
10
Cummings J J, Holm B A, Hudak M L, Hudak B B, Ferguson W H, Egan E A.
A controlled clinical comparison of four different surfactant preparations in surfactant-deficient preterm lambs.
Am Rev Respir Dis.
1992;
145
999-1004
11 Soll R F, Blanco F. Natural surfactant extract versus synthetic surfactant for neonatal respiratory distress syndrome (Cochrane Review). The Cochrane Library 2002
12
Whitsett J A, Weaver T E.
Hydrophobic surfactant proteins in lung function and disease.
N Engl J Med.
2002;
347
2141-8
13
Possmayer F.
A proposed nomenclature for pulmonary surfactant-associated proteins.
Am Rev Respir Dis.
1988;
138
990-8
14
Kramer B W, Speer C P.
Die Surfactantproteine A und D: Wesentliche Faktoren des pulmonalen Abwehrsystems.
Z Geburtshilfe Neonatol.
2003;
207
41-7
15
Perez-Gil J.
Lipid-protein interactions of hydrophobic proteins SP-B and SP-C in lung surfactant assembly and dynamics.
Pediatr Pathol Mol Med.
2001;
20
445-69
16
Bohinski R J, Di Lauro R, Whitsett J A.
The lung-specific surfactant protein B gene promoter is a target for thyroid transcription factor 1 and hepatocyte nuclear factor 3, indicating common factors for organ-specific gene expression along the foregut axis.
Mol Cell Biol.
1994;
14
5671-81
17
Yan C, Naltner A, Martin M, Naltner M, Fangman J M, Gurel O.
Transcriptional stimulation of the surfactant protein B gene by STAT3 in respiratory epithelial cells.
J Biol Chem.
2002;
277
10 967-72
18
Jobe A H, Ikegami M.
Antenatal infection/inflammation and postnatal lung maturation and injury.
Respir Res.
2001;
2
27-32
19
Salinas D, Sparkman L, Berhane K, Boggaram V.
Nitric Oxide Inhibits Surfactant Protein B (Sp-B) Gene Expression in Lung Epithelial Cells.
Am J Physiol Lung Cell Mol Physiol.
2003;
285
1153-1165
20
Strayer M, Savani R C, Gonzales L W, Zaman A, Cui Z, Veszelovszky E ,. et al .
Human surfactant protein B promoter in transgenic mice: temporal, spatial, and stimulus-responsive regulation.
Am J Physiol Lung Cell Mol Physiol.
2002;
282
L394-404
21
Schreiber M D, Gin-Mestan K, Marks J D, Huo D, Lee G, Srisuparp P.
Inhaled nitric oxide in premature infants with the respiratory distress syndrome.
N Engl J Med.
2003;
349
2099-107
22
Nogee L M, de Mello D E, Dehner L P, Colten H R.
Brief report: deficiency of pulmonary surfactant protein B in congenital alveolar proteinosis.
N Engl J Med.
1993;
328
406-10
23
Tokieda K, Whitsett J A, Clark J C, Weaver T E, Ikeda K, McConnell K B,. et al .
Pulmonary dysfunction in neonatal SP-B-deficient mice.
Am J Physiol.
1997;
273
L875-82
24
Hamvas A, Trusgnich M, Brice H, Baumgartner J, Hong Y, Nogee L M,. et al .
Population-based screening for rare mutations: high-throughput DNA extraction and molecular amplification from Guthrie cards.
Pediatr Res.
2001;
50
666-668
25
Trapnell B C, Whitsett J A, Nakata K.
Pulmonary alveolar proteinosis.
N Engl J Med.
2003;
349
2527-39
26
Kitamura T, Tanaka N, Watanabe J, Uchida K, Kanegasaki S, Yamada Y. et al .
Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor.
J Exp Med.
1999;
190
875-80
27
Hallman M, Haataja R.
Genetic influences and neonatal lung disease.
Semin Neonatol.
2003;
8
19-27
28
Makri V, Hospes B, Stoll-Becker S, Borkhardt A, Gortner L.
Polymorphisms of surfactant protein B encoding gene: modifiers of the course of neonatal respiratory distress syndrome?.
Eur J Pediatr.
2002;
161
604-608
29
Tutdibi E, Hospes B, Landmann E, Gortner L, Satar M, Yurdakok M ,. et al .
Transient Tachypnea of the Newborn (TTN): A Role for Polymorphisms of Surfactant Protein B (SP-B) Encoding Gene?.
Klin Padiatr.
2003;
215
248-52
30
Epaud R, Ikegami M, Whitsett J A, Jobe A H, Weaver T E, Akinbi H T.
Surfactant protein B inhibits endotoxin-induced lung inflammation.
Am J Respir Cell Mol Biol.
2003;
28
373-378
31
van Iwaarden J F, Claassen E, Jeurissen S H, Haagsman H P, Kraal G.
Alveolar macrophages, surfactant lipids, and surfactant protein B regulate the induction of immune responses via the airways.
Am J Respir Cell Mol Biol.
2001;
24
452-458
32
Friedrich B, Schmidt R, Reiss I, Gunther A, Seeger W, Muller M ,. et al .
Changes in biochemical and biophysical surfactant properties with cardiopulmonary bypass in children.
Crit Care Med.
2003;
31
284-90
33
Griese M, Wilnhammer C, Jansen S, Rinker C.
Cardiopulmonary bypass reduces pulmonary surfactant activity in infants.
J Thorac Cardiovasc Surg.
1999;
118
237-44
34
Pichel J G, Fernandez-Moreno C, Vicario-Abejon C, Testillano P S, Patterson P H, de Pablo F.
Developmental cooperation of leukemia inhibitory factor and insulin-like growth factor I in mice is tissue-specific and essential for lung maturation involving the transcription factors Sp3 and TTF-1.
Mech Dev.
2003;
120
349-61
35
Whitsett J A, Nogee L M, Weaver T E, Horowitz A D.
Human surfactant protein B: structure, function, regulation, and genetic disease.
Physiol Rev.
1995;
75
749-57
36
Rice W R, Sarin V K, Fox J L, Baatz J, Wert S, Whitsett J A.
Surfactant peptides stimulate uptake of phosphatidylcholine by isolated cells.
Biochim Biophys Acta.
1989;
1006
237-45
37
Horowitz A D, Moussavian B, Han E D, Baatz J E, Whitsett J A.
Distinct effects of SP-A and SP-B on endocytosis of SP-C by pulmonary epithelial cells.
Am J Physiol.
1997;
273
L159-71
38
Glasser S W, Burhans M S, Korfhagen T R, Na C L, Sly P D, Ross G F,. et al .
Altered stability of pulmonary surfactant in SP-C-deficient mice.
Proc Natl Acad Sci U S A.
2001;
98
6366-71
39
Bridges J P, Wert S E, Nogee L M, Weaver T E.
Expression of a human SP-C mutation associated with interstitial lung disease disrupts lung development in transgenic mice.
J Biol Chem.
2003;
2
2
40
Conkright J J, Na C L, Weaver T E.
Overexpression of surfactant protein-C mature peptide causes neonatal lethality in transgenic mice.
Am J Respir Cell Mol Biol.
2002;
26
85-90
41
Amin R S, Wert S E, Baughman R P, Tomashefski J F, Jr., Nogee L M, Brody A S,. et al .
Surfactant protein deficiency in familial interstitial lung disease.
J Pediatr.
2001;
139
85-92
42
Nogee L M, Dunbar A E, 3rd, Wert S E, Askin F, Hamvas A, Whitsett J A.
A mutation in the surfactant protein C gene associated with familial interstitial lung disease.
N Engl J Med.
2001;
344
573-579
43
Augusto L, Le Blay K, Auger G, Blanot D, Chaby R.
Interaction of bacterial lipopolysaccharide with mouse surfactant protein C inserted into lipid vesicles.
Am J Physiol Lung Cell Mol Physiol.
2001;
281
L776-85
44
Augusto L A, Synguelakis M, Espinassous Q, Lepoivre M, Johansson J, Chaby R.
Cellular antiendotoxin activities of lung surfactant protein C in lipid vesicles.
Am J Respir Crit Care Med.
2003;
168
335-41
45
Hilgendorff A, Rawer D, Doerner M, Tutdibi E, Ebsen M, Schmidt R ,. et al .
Synthetic and natural surfactant differentially modulate inflammation after meconium aspiration.
Intensive Care Med.
2003;
29
2247-54
46
Reiss I, Hilgendorff A, Ebsen M, Seeliger S, Kuchenbuch T, Heckmann M ,. et al .
Comparison of recombinant SP-C and natural bovine surfactant in premature rabbits with RDS.
Pediatric Research.
2003;
54
537; A
Prof. Dr. L. Gortner
Geschäftsführender Direktor
Universitätsklinik für Kinder- und Jugendmedizin
Gebäude 9
66421 Homburg/Saar
Phone: 06841/1628300
Fax: 06841/1628310
Email: kilgor@uniklinik-saarland.de