Subscribe to RSS
DOI: 10.1055/s-2004-820342
© Georg Thieme Verlag Stuttgart · New York
Induktion von Knochengewebe auf unterschiedlichen Matrizes: Eine In-vitro- und In-vivo-Pilotstudie in der SCID Maus
Induction of Bone Tissue on Different Biomaterials: An In Vitro and a Pilot In Vivo Study in the SCID MousePublication History
Publication Date:
02 September 2004 (online)
Zusammenfassung
Studienziel: Drei resorbierbare Biomaterialien wurden hinsichtlich der Proliferation humaner stromaler Knochenmarkszellen (BMSC) und ihrer osteogenen Differenzierung in vitro untersucht. In einem zweiten Versuchsabschnitt wurde in einer in-vivo Pilotstudie der neue Knochenersatzstoff Kalzium-defizientes Hydroxylapatit (CDHA) mittels subkutaner Implantation in der kombiniert immundefizienten (SCID) Maus evaluiert. Methoden: Zwei Keramiken, CDHA und β-Trikalziumphosphat (β-TCP) sowie demineralisierte Knochenmatrix (DBM) wurden mit BMSC besiedelt und für 3 Wochen in osteogenem Medium in vitro kultiviert. Für die in-vivo Pilotstudie mit 8 SCID Mäusen wurden besiedelte CDHA-Proben in einem Ansatz für 14 Tage im osteogenem Medium kultiviert (Gruppe A) und dann subkutan für 3 bzw. 8 Wochen implantiert. In einem zweiten Ansatz wurden die besiedelten CDHA-Proben ohne Vorkultivierung (Gruppe B) und Leerkontrollen in jeweils dieselbe Maus implantiert. Ergebnisse: Auf allen Biomaterialien stieg das Gesamtprotein und die spezifische alkalische Phosphatase (ALP) über 3 Wochen in vitro signifikant an. In der DBM war eine homogene Verteilung der BMSC vorhanden, die über 3 Wochen zunahm. Im CDHA fanden sich vor allem in den äußeren Schichten Zellen, die Zellzahlen im β-TCP waren sehr niedrig. In dem in-vivo Versuch zeigte sich in allen CDHA-Matrices eine gute Penetration und in 2 von 4 Proben in Gruppe B und 1 von 4 Proben in Gruppe A nach 8 Wochen Zellformationen mit der Morphologie von hypertrophen Faserknorpelzellen. Die spezifischen ALP Werte waren gegenüber den Leerkontrollen in den Gruppen B (p = 0,012, Z = - 2,5) signifikant erhöht, signifikante Unterschiede zwischen Gruppen A und B fanden sich nicht. Der Gruppenvergleich der Gruppe A zur Leerkontrolle erreichte nicht das Signifikanzniveau (p = 0,069, Z = - 1,8). Zusammenfassung: Alle getesteten Biomaterialien erscheinen geeignet für eine Proliferation und Differenzierung von BMSC zu sein. Humane BMSC auf CDHA zeigten nach ektoper subkutaner Implantation Zeichen einer osteogenen Differenzierung.
Abstract
Aim: Three resorbable biomaterials were evaluated regarding proliferation and osteogenic differentiation of human bone marrow stromal cells (BMSC) in vitro. In a second step, the new biomaterial, calcium-deficient hydroxyapatite (CDHA), was tested in a pilot in vivo study by subcutaneous implantation in the severe combined immunodeficiency (SCID) mouse. Methods: CDHA, β-tricalcium phosphate (β-TCP), and demineralized bone matrix (DBM) were seeded with human BMSC and cultured in osteogenic supplements for 3 weeks. In the pilot in vivo study, CDHA was seeded with BMSC and kept in osteogenic media for 2 weeks (group A) before subcutaneous implantation in 8 SCID mice for 3 and 8 weeks. In addition, CDHA seeded with BMSC without prior osteogenic induction (group B) and empty ceramics were implanted in each mouse. Results: Total protein content and the values for specific alkaline phosphatase (ALP) increased significantly in vitro on all matrices, but no significant difference between the groups was noted. In the pilot in vivo study all ceramics were well penetrated by cells. After 8 weeks 2 of 4 samples in group B and 1 of 4 samples in group A revealed cells resembling hypertrophic chondrocytes. Specific ALP was higher in the group B (p = 0.012, Z = - 2.5) compared to empty ceramics. There were no significant differences between groups A and B. Differences between group A and the empty control did not become significant (p = 0.069, Z = - 1.8). Conclusion: All three matrices promoted BMSC proliferation and differentiation to osteogenic cells in vitro. Human BMSC on CDHA showed signs of osteogenic differentiation after subcutaneous implantation into SCID mice.
Schlüsselwörter
Knochenersatzmaterialien - stromale Knochenmarkzellen - Keramiken - SCID-Maus - Knochenbildung
Key words
Biomaterials - bone marrow stromal cells - ceramics - SCID mice - bone tissue engineering
Literatur
- 1 Rueger J M. Bone substitution materials. Current status and prospects. Orthopade. 1998; 27 72-79
- 2 Younger E M, Chapman M W. Morbidity at bone graft donor sites. J Orthop Trauma. 1989; 3 192-195
- 3 Gebhart M, Lane J. A radiographical and biomechanical study of demineralized bone matrix implanted into a bone defect of rat femurs with and without bone marrow. Acta Orthop Belg. 1991; 57 130-143
- 4 Bruder S P, Kraus K H, Goldberg V M, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg [Am]. 1998; 80 985-996
- 5 Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000; 49 328-337
- 6 Puelacher W C, Vacanti J P, Ferraro N F, Schloo B, Vacanti C A. Femoral shaft reconstruction using tissue-engineered growth of bone. Int J Oral Maxillofac Surg. 1996; 25 223-228
- 7 Quarto R, Mastrogiacomo M, Cancedda R, Kutepov S M, Mukhachev V, Lavroukov A, Kon E, Marcacci M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001; 344 385-386
- 8 Ohgushi H, Caplan A I. Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res. 1999; 48 913-927
- 9 Bohner M. Kalzium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000; 31 (Suppl 4) 37-47
- 10 Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie C M. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood. 2001; 98 2615-2625
- 11 Gregory J D, Sajdera S W. Interference in the Lowry method for protein determination. Science. 1970; 169 97-98
- 12 Turner L V, Manchester K L. Interference of HEPES with the Lowry method 2. Science. 1970; 170 649
- 13 Vacanti C A, Bonassar L J. An overview of tissue engineered bone. Clin Orthop. 1999; Oct (367 Suppl) S375-S381
- 14 Laurencin C T, Attawia M A, Lu L Q, Borden M D, Lu H H, Gorum W J, Lieberman J R. Poly(lactide-co-glycolide)/hydroxyapatite delivery of BMP-2-producing cells: a regional gene therapy approach to bone regeneration. Biomaterials. 2001; 22 1271-1277
- 15 Rueger J M, Linhart W, Sommerfeldt D. Biologic reactions to calcium phosphate ceramic implantations. Results of animal experiments. Orthopade. 1998; 27 89-95
- 16 Schaefer D, Martin I, Shastri P, Padera R F, Langer R, Freed L E, Vunjak-Novakovic G. In vitro generation of osteochondral composites. Biomaterials. 2000; 21 2599-2606
- 17 Laurencin C T, Attawia M A, Elgendy H E, Herbert K M. Tissue engineered bone-regeneration using degradable polymers: the formation of mineralized matrices. Bone. 1996; 19 93S-99S
- 18 Yamamoto M, Kato K, Ikada Y. Ultrastructure of the interface between cultured osteoblasts and surface-modified polymer substrates. J Biomed Mater Res. 1997; 37 29-36
- 19 Nade S, Armstrong L, McCartney E, Baggaley B. Osteogenesis after bone and bone marrow transplantation. The ability of ceramic materials to sustain osteogenesis from transplanted bone marrow cells: preliminary studies. Clin Orthop. 1983; Dec (181) 255-263
- 20 Zambonin G, Losito I, Triffitt J T, Zambonin C G. Detection of collagen synthesis by human osteoblasts on a tricalcium phosphate hydroxyapatite: an X-ray photoelectron spectroscopy investigation. J Biomed Mater Res. 2000; 49 120-126
- 21 Gronthos S, Zannettino A CW, Hay S J, Shi S, Graves S E, Kortesidis A, Simmons P J. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. Journal of Cell Science. 2003; 116 1827-1835
- 22 Miura M, Gronthos S, Zhao M, Lu B, Fisher L W, Robey P G, Shi S. SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences. 2003; 100 5807-5812
Dr. med. Philip Kasten
Orthopädische Universitätsklinik Heidelberg
Schlierbacher Landstr. 200 a
69118 Heidelberg
Deutschland
Phone: +49-62 21-96-5
Fax: +49-62 21-96-63 47
Email: Philip.Kasten@gmx.de