Plant Biol (Stuttg) 2004; 6(3): 319-324
DOI: 10.1055/s-2004-820873
Original Paper

Georg Thieme Verlag Stuttgart KG · New York

Thermoluminescence Study of Photosystem II Activity in Haberlea rhodopensis and Spinach Leaves During Desiccation

V. Peeva1 , L. Maslenkova1
  • 1Acad. M. Popov Institute of Plant Physiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
Further Information

Publication History

Publication Date:
14 May 2004 (online)

Abstract

Thermoluminescence glow curve parameters were used to access the functional features of PS II in the Balkan endemic Haberlea rhodopensis. This representative of the higher desiccation-tolerant plants is unique for the European flora. An unusual high temperature of TL emission from Haberlea leaves after excitation by one flash at 5 °C was observed. The position of the main TL B band (S2QB -) was at 45 - 47 °C, while this temperature was 30 - 32 °C in drought-sensitive mesophytic spinach. Consistent with the up-shift in TL emission, the lifetime of the S2 state was also increased, showing a stabilization of charge storage in PS II complex in this resurrection plant. In addition, a part of PS II centres was less susceptible to DCMU. We consider the observed unusual TL characteristics of Haberlea rhodopensis reflect some structural modifications in PS II (especially in D1 protein), which could be related to the desiccation tolerance of this plant. This suggestion was supported by the different manner in which dehydration affected the TL properties in desiccation-tolerant Haberlea and desiccation-sensitive spinach plants.

References

  • 1 Bewley J. D.. Physiological aspects of desiccation tolerance.  Annu. Rev. Plant Physiol.. (1979);  30 195-238
  • 2 Bjorkman O., Powles S. B.. Inhibition of photosynthetic reactions under water stress: interaction with light level.  Planta. (1984);  161 490-504
  • 3 Boyer J. S.. Water deficits and photosynthesis. Kozlowski, T. T., ed. Water Deficit and Plant Growth. New York; Academic Press (1976): 153-190
  • 4 Bradford K. J., Hsiao T. C.. Physiological responses to moderate water stress. Langw, O. L., Nobel, P. S., Osmond, C. B., and Ziegler, H., eds. Encyclopedia of Plant Physiology, N.S., Vol. 12 B: Physiological Plant Ecology II: Water Relations and Carbon Assimilation. Berlin, Heidelberg, New York; Springer (1982): 263-324
  • 5 Canaani O., Havaux M., Malkin S.. Hydroxylamine, hydrazine and methylamine donate electrons to the photooxidizing side of photosystem II in leaves inhibited in oxygen evolution due to water stress.  Biochim Biophys Acta.. (1986);  851 151-155
  • 6 Chen Y. H., Hsu B. D.. Effect of dehydration on the electron transport of Chlorella. An in vivo fluorescence study.  Photosynth. Res.. (1995);  46 295-299
  • 7 Gaff D. F.. Responses of desiccation tolerant “resurrection” plants to water stress. Kreeb, K. H., Richter, H., and Hinckley T. M., eds. Sructural and Functional Responses to Environmental Stresses. The Hague; Acad. Publishing (1989): 255-268
  • 8 Gaff D. F., Hallam N. D.. Resurrecting desiccated plants.  R. Soc. N. Z. Bull.. (1974);  12 389-393
  • 9 Giardi M. T., Cona A., Geiken B., Kucera T., Masojidek J., Mattoo A. K.. Long-term drought stress induces structural and functional reorganization of photosystem II.  Planta. (1996);  199 118-125
  • 10 Govindjee Downton W. J. S., Fox D. S., Armond P. A.. Chlorophyll a fluorescence transitient as an indicator of water potential of leaves.  Plant Sci. Lett,. (1981);  20 191-194
  • 11 Govindjee Koike H., Ynoue Y.. Thermoluminescence and oxygen evolution from a thermophilic blue-green alga obtained after single-turnover light flashes.  Photochem. and Photobiol.. (1985);  42 579-585
  • 12 Havaux M., Canaani O., Malkin S.. Photosynthetic responses of leaves to water stress, expressed by photoacoustics and related methods.  Plant Physiol.. (1986);  82 827-833
  • 13 He Y. X., Wang J., Liang H. G.. Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves.  Physiol. Plant.. (1995);  93 771-777
  • 14 Hideg E., Sass L., Barbato R., Vass I.. Inactivation of photosynthetic oxygen evolution by UV-B irradiation: A thermoluminescence study.  Photosynthesis Research.. (1993);  38 455-462
  • 15 Hsiao T. C.. Plant responses to water stress.  Annu. Rev. Plant Physiol.. (1973);  24 519-570
  • 16 Ingram J., Bartles D.. The molecular basis of dehydration tolerance in plants.  Annu. Rev. Plant Physiol. Plant Mol. Biol.. (1996);  47 377-403
  • 17 Kaiser W. M.. Effects of water deficit on photosynthetic capacity.  Physiol. Plant.. (1987);  71 142-149
  • 18 Krieger A., Botle S., Dietz K-J., and. Ducruet J.-M.. Thermoluminescence studies on the facultative crassulacean-acid-metabolism plant Mesembryanthemum crystallinum L.  Planta,. (1998);  205 587-594
  • 19 Maslenkova L., Homann P.. Stabilized S2 state in leaves of the desiccation tolerant resurrection fern Polipodium polipodioides. .  Compt. Rend. Bulg. Acad. Sci.. (2000);  53 (4) 99-102
  • 20 Matouskova M., Bartoskova H., Naus J., Novotny R.. Reaction of photosynthetic apparatus to dark desiccation sensitively detected by the introduction of chlorophyll fluorescence quenching.  J. Plant Physiol.. (1999);  155 399-406
  • 21 Ohad I., Adir N., Koike H., Kyle D. J., Inoue Y.. Mechanism of photoinhibition in vivo. A reversible light-induced conformational change of reaction center II is related to an irreversible modification of the D1 protein.  The J. of Biochem. Chemistry. (1990);  265 (4) 1972-1979
  • 22 Rutherford A. W., Crofts A. R., Inoue Y.. Thermoluminescence as a probe of photosystem II photochemistry. The origin of the flash-induced glow peaks.  Biochim. Biophys. Acta. (1982);  682 457-465
  • 23 Rutherford A. W., Govindjee and Inoue Y.. Charge accumulation and photochemistry in leaves studied by thermoluminescence and delayed light emission.  Proc. Natl. Acad. Sci. USA. (1984);  81 1107-1111
  • 24 Sane P. V., Rutherford A. W.. Thermoluminescence from photosynthetic membranes. Govindjee, Amesz, J., and Fork, D. C., eds. Light Emission by Plants and Bacteria. New York; Academic Press (1986): 329-361
  • 25 Sass L., Csintalan Z., Tuba Z., Vass I.. Thermoluminescence studies on the function of photosystem II in the desiccation tolerant lichen Cladonia convoluta. .  Photosynthesis Res.. (1996);  48 205-212
  • 26 Schwab K. B., Heber U.. Thylakoid membrane stability in drought-tolerant and drought-sensitive plants.  Planta. (1984);  161 37-45
  • 27 Schwab K. B., Schreiber U., Heber U.. Response of photosynthesis and respiration of resurrection plants to desiccation and rehydration.  Planta. (1989);  177 217-227
  • 28 Skotnica J., Matouskova M., Naus J., Lazar D., Dvorak L.. Thermoluminescence and fluorescence study of changes in photosystem II photochemistry in desiccating barley leaves.  Photosynthesis Research. (2000);  65 29-40
  • 29 Stefanov K., Markovska Y., Kimenov G., Popov S.. Lipid and sterol changes in leaves of Haberlea rhodopensis and Ramonda serbica at transition from biosis into anabiosis and vice versa caused by water stress.  Photochemistry. (1992);  31 2309-2314
  • 30 Tuba Z., Csintalan Z., Proctor M.. Photosynthetic responses of a moss, Tortula ruralis, ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: a baseline study at present-day CO2 concentration.  New Phytol.. (1996);  133 353-361
  • 31 Turner N. C.. Techniques and experimental approaches for the measurements of plant water status.  Plant Soil. (1981);  58 339-366
  • 32 Vass I., Inoue Y.. Thermoluminescence in the study of photosystem II. Barber, J., ed. Topics in Photosynthesis, Vol. II, The Photosystems: Structure, Function and Molecular Biology. Amsterdam; Elsevier (1992): 259-294
  • 33 Vass I., Govindjee. Thermoluminescence from the photosynthetic apparatus.  Photosynthesis Research.. (1996);  48 117-126
  • 34 Yordanov I., Velikova V., Tsonev T.. Plant responses to drought, acclimation and stress tolerance.  Photosynthetica. (2000);  38 171-186
  • 35 Zeinalov Yu., Maslenkova L.. A computerised equipment for thermoluminescence investigations.  Bulg. J. Plant Physiol.. (1996);  22 88-94

V. Peeva

Acad. M. Popov Institute of Plant Physiology
Bulgarian Academy of Sciences

Acad G. Bonchev Str., Bl. 21

Sofia 1113

Bulgaria

Email: vili@obzor.bio21.bas.bg

Guest Editor: F. Loreto