Plant Biol (Stuttg) 2004; 6(6): 730-739
DOI: 10.1055/s-2004-821268
Original Paper

Georg Thieme Verlag Stuttgart KG · New York

Carbon Balance in Leaves of Young Poplar Trees

S. Mayrhofer1 , U. Heizmann2 , E. Magel3 , M. Eiblmeier2 , A. Müller3 , H. Rennenberg2 , R. Hampp3 , J.-P. Schnitzler1 , J. Kreuzwieser2
  • 1Forschungszentrum Karlsruhe GmbH, Institut für Meteorologie und Klimaforschung, Atmosphärische Umweltforschung (IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
  • 2Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Georges-Köhler-Allee, Geb. 053/54, 79110 Freiburg i. B., Germany
  • 3Physiologische Ökologie der Pflanzen, Botanisches Institut, Universität Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany
Further Information

Publication History

Received: May 19, 2004

Accepted: July 20, 2004

Publication Date:
20 October 2004 (online)

Abstract

In the present study, important components of carbon metabolism of mature leaves of young poplar trees (Populus × canescens) were determined. Carbohydrate concentrations in leaves and xylem sap were quantified at five different times during the day and compared with photosynthetic gas exchange measurements (net assimilation, transpiration and rates of isoprene emission). Continuously measured xylem sap flow rates, with a time resolution of 15 min, were used to calculate diurnal balances of carbon metabolism of whole mature poplar leaves on different days. Loss of photosynthetically fixed carbon by isoprene emission and dark respiration amounted to 1 % and 20 %. The most abundant soluble carbohydrates in leaves and xylem sap were glucose, fructose and sucrose, with amounts of approx. 2 to 12 mmol m-2 leaf area in leaves and about 0.2 to 15 mM in xylem sap. Clear diurnal patterns of carbohydrate concentration in xylem sap and leaves, however, were not observed. Calculations of the carbon transport rates in the xylem to the leaves were based on carbohydrate concentrations in xylem sap and xylem sap flow rates. This carbon delivery amounted to about 3 µmol C m-2 s-1 during the day and approx. 1 µmol C m-2 s-1 at night. The data demonstrated that between 9 and 28 % of total carbon delivered to poplar leaves during 24 h resulted from xylem transport and, hence, provide a strong indication for a significant rate of carbon cycling within young trees.

References

  • 1 Brüggemann N., Schnitzler J.-P.. Comparison of isoprene emission, intercellular isoprene concentration and photosynthetic performance in water-limited oak (Quercus pubescens Willd. and Quercus robur L.) saplings.  Plant Biology. (2002);  4 456-463
  • 2 Candolfi-Vasconcelos M. C., Candolfi M. P., Koblet W.. Retranslocation of carbon reserves from the woody storage tissues into the fruit as a response to defoliation stress during the ripening period in Vitis vinifera L.  Planta. (1994);  192 567-573
  • 3 Cermak J., Deml M., Penka M.. A new method of sap flow rate determination in trees.  Biologia Plantarum. (1973);  15 171-178
  • 4 Cienciala E., Lindroth A.. Gas-exchange and sap flow measurements of Salix viminalis trees in short-rotation forest 1. Transpiration and sap flow.  Trees. (1995);  9 289-294
  • 5 Cooper H. D., Clarkson D. T.. Cycling of amino nitrogen and other nutrients between shoot and roots in cereals as possible mechanism integrating shoot and root in the regulation of nutrient uptake.  Journal of Experimental Botany. (1989);  40 753-762
  • 6 Cramer M. D., Richards M. B.. The effect of rhizosphere dissolved inorganic carbon on gas exchange characteristics and growth rates of tomato seedlings.  Journal of Experimental Botany. (1999);  50 79-87
  • 7 Einig W., Hampp R.. Carbon partitioning in Norway spruce: amounts of fructose 2,6-bisphosphate and of intermediates of starch/sucrose synthesis in relation to needle age and degree of needle loss.  Trees. (1990);  4 9-15
  • 8 Eisenreich W., Rohdich F., Bacher A.. Deoxyxylulose phosphate pathway of terpenoids.  TIPS. (2001);  6 78-84
  • 9 Ferguson A. R.. Xylem sap from Actinia chinensis: Apparent differences in sap composition arising from the method of collection.  Annals of Botany. (1980);  46 791-801
  • 10 Geßler A., Schneider S., Weber P., Hanemann U., Rennenberg H.. Soluble N compounds in trees exposed to high loads of N: a comparison between the roots of Norway spruce (Picea abies [L.] Karst) and beech (Fagus sylvatica L.) trees grown under field conditions.  New Phytologist. (1998);  138 385-399
  • 11 Glad C., Regnard J. L., Querou Y., Brun O., Morot-Gaudry J. F.. Flux and chemical composition of xylem exudates from Chardonnay grapevines temporal evolution and effect of recut.  American Journal of Enology and Viticulture. (1992);  43 275-282
  • 12 Harley P., Lerdau M., Monson R. K.. Ecological and evolutionary aspects of isoprene emission.  Oecologia. (1998);  118 109-123
  • 13 Heizmann U., Kreuzwieser J., Schnitzler J.-P., Brüggemann N., Rennenberg H.. Assimilate transport in the xylem sap of pedunculate oak (Quercus robur) seedlings.  Plant Biology. (2001);  3 132-138
  • 14 Kesselmeier J., Staudt M.. Biogenic volatile organic compounds (VOC): An overview on emission, physiology, and ecology.  Journal of Atmospheric Chemistry. (1999);  33 23-88
  • 15 Kozlowski T. T.. Carbohydrate sources and sinks in woody plants.  Botanical Review. (1992);  58 107-222
  • 16 Kozlowski T. T., Pallardy S. G.. Physiology of Woody Plants. San Diego; Academic Press (1996): 411pp-ISBN 0-12424-162-X
  • 17 Kühn C., Barker L., Bürkle L., Frommer W.-B.. Update on sucrose transport in higher plants.  Journal of Experimental Botany. (1999);  50 935-953
  • 34 Leplé J. C., Brasiliero A.-C. M., Michel M. F., Delmotte F., Jouanin L.. Transgenic poplars: Expression of chimeric genes using four different constructs.  Plant Cell Reports. (1992);  11 137-141
  • 18 Lichtenthaler H. K.. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants.  Annual Reviews of Plant Physiology and Plant Molecular Biology. (1999);  50 47-65
  • 19 Lindroth A., Cermak J., Kucera J., Cienciala E., Eckersten H.. Sap flow by heat balance method applied to small size Salix-trees in a short-rotation forest.  Biomass and Bioenergy. (1995);  8 7-15
  • 20 Martin T., Frommer W.-B., Salanoubat M., Willmitzer L.. Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs.  The Plant Journal. (1993);  4 367-377
  • 21 Millard P., Proe M. F.. Storage and internal cycling of N in relation to seasonal growth of Sitka spruce.  Tree Physiology. (1992);  10 33-43
  • 22 Morselli M. F., Marvin J. W., Laing F. M.. Image-analysing computer in plant science: More and larger vascular rays in sugar maples of high sap and sugar yield.  Canadian Journal of Botany. (1978);  56 983-986
  • 23 Patonnier M. P., Peltier J. P., Marigo G.. Drought-induced increase in xylem malate and mannitol concentrations and closure of Fraxinus excelsior L. stomata.  Journal of Experimental Botany. (1999);  50 1223-1229
  • 24 Peuke A. D.. Xylem and phloem transport, assimilation and partitioning of nitrogen in Ricinus communis under several nutritional conditions. Martins-Loucao, M. A. and Lips, S. H., eds. Nitrogen in a Sustainable Ecosystem: From Cell to the Plant. Leiden, The Netherlands; Backhuys Publishers (2000): 211-225
  • 25 Rennenberg H., Schneider S., Weber P.. Analysis of uptake and allocation of nitrogen and sulphur by trees in the field.  Journal of Experimental Botany. (1996);  47 1491-1498
  • 26 Sauter J. J.. Seasonal variation of sucrose content in the xylem sap of Salix. .  Zeitschrift für Pflanzenphysiologie. (1980);  98 377-391
  • 27 Schneider A., Schatten T., Rennenberg H.. Exchange between phloem and xylem during long distance transport of glutathione in spruce trees (Picea abies [Karst. ] L.).  Journal of Experimental Botany. (1994);  45 457-462
  • 28 Schneider S., Geßler A., Weber P., von Sengbusch D., Hanemann U., Rennenberg H.. Soluble N compounds in trees exposed to high loads of N: a comparison of spruce (Picea abies) and beech (Fagus sylvatica) grown under field conditions.  New Phytologist. (1996);  134 103-114
  • 29 Scholander P. F., Hammel T., Bradstreet E. D., Hemmingsen E. A.. Sap pressure in vascular plants.  Science. (1965);  148 339-345
  • 35 Siebrecht S., Tischner R.. Changes in the xylem exudate composition of poplar (Populus tremula × P. alba) - dependent on the nitrogen and potassium supply.  Journal of Experimental Botany. (2000);  50 1797-1806
  • 30 Taylor F. H.. Variation in sugar content of maple sap.  Bulletin of the Univerity of Verment Agricultural Experiment Station. (1956);  587 1-39
  • 31 Voitsekhovskaja O. V., Pakhomova M. V., Syutkina A. V., Gamalei Y. V., Heber U.. Compartmention of assimilate fluxes in leaves. II. Apoplastic sugar levels in leaves of plants with different companion cell types.  Plant Biology. (2000);  2 107-112
  • 32 Yu S.-M.. Cellular and genetic responses of plants to sugar starvation.  Plant Physiology. (1999);  121 687-693
  • 33 Zimmer W., Brüggemann N., Emeis S., Giersch C., Lehning A., Steinbrecher R., Schnitzler J.-P.. Process-based modelling of isoprene emission by oaks.  Plant Cell Environment. (2000);  23 585-597

J. Kreuzwieser

Albert-Ludwig-Universität Freiburg
Institut für Forstbotanik und Baumphysiologie
Professur für Baumphysiologie

Georges-Köhler-Allee, Geb. 053/54

79110 Freiburg i. B.

Germany

Email: juergen.kreuzwieser@ctp.uni-freiburg.de

Editor: T. Sharkey