Int J Sports Med 2005; 26(7): 593-598
DOI: 10.1055/s-2004-821327
Orthopedics & Biomechanics

© Georg Thieme Verlag KG Stuttgart · New York

Mechanical Comparison of Barefoot and Shod Running[*]

C. Divert1 , G. Mornieux1 , H. Baur2 , F. Mayer2 , A. Belli1
  • 1Laboratory of Physiology, GIP Exercice-Sport-Santé, University of Saint-Etienne, France
  • 2Medical Clinic, Department of Preventive and Rehabilitative Sports Medicine, University of Freiburg, Germany
Further Information

Publication History

Accepted after revision: July 30, 2004

Publication Date:
27 September 2004 (online)

Abstract

In order to further compare shod versus barefoot running, 35 subjects ran two bouts of 4 minutes at 3.33 m · s-1 on a treadmill dynamometer. Parameters were measured on about 60 consecutive steps. Barefoot showed mainly lower contact and flight time (p < 0.05), lower passive peak (1.48 versus 1.70 body weight, p < 0.05), higher braking and pushing impulses (p < 0.05), and higher pre-activation of triceps surae muscles (p < 0.05) than shod. It was concluded that when performed on a sufficient number of steps, barefoot running leads to a reduction of impact peak in order to reduce the high mechanical stress occurring during repetitive steps. This neural-mechanical adaptation could also enhance the storage and restitution of elastic energy at ankle extensors level.

1 The work was undertaken at the Laboratoire de Physiologie - GIP E2S, Pavillon 12, Hôpital St Jean Bonnefonds, 42055 Saint-Etienne Cedex 2, France

References

  • 1 Arsenault A B, Winter D A, Marteniuk R G. Treadmill versus walkway locomotion in humans: an EMG study.  Ergonomics. 1986;  29 665-676
  • 2 Aura O, Komi P V. Effects of prestretch intensity on mechanical efficiency of positive work and on elastic behavior of skeletal muscle in stretch-shortening cycle exercise.  Int J Sports Med. 1986;  7 137-143
  • 3 Bates B T, Osternig L R, Mason B R, James S L. Functional variability of the lower extremity during the support phase of running.  Med Sci Sports. 1979;  11 328-331
  • 4 Belli A, Bui P, Berger A, Geyssant A, Lacour J R. A treadmill ergometer for three-dimensional ground reaction forces measurement during walking.  J Biomech. 2001;  34 105-112
  • 5 Belli A, Lacour J R, Komi P V, Candau R, Denis C. Mechanical step variability during treadmill running.  Eur J Appl Physiol. 1995;  70 510-517
  • 6 Bosco C, Komi P V, Ito A. Prestretch potentiation of human skeletal muscle during ballistic movement.  Acta Physiol Scand. 1981;  111 135-140
  • 7 Bosco C, Rusko H. The effect of prolonged skeletal muscle stretch-shortening cycle on recoil of elastic energy and on energy expenditure.  Acta Physiol Scand. 1983;  119 219-224
  • 8 Bosco C, Tihanyi J, Komi P V, Fekete G, Apor P. Store and recoil of elastic energy in slow and fast types of human skeletal muscles.  Acta Physiol Scand. 1982;  116 343-349
  • 9 Burkett L N, Kohrt W M, Buchbinder R. Effects of shoes and foot orthotics on VO2 and selected frontal plane knee kinematics.  Med Sci Sports Exerc. 1985;  17 158-163
  • 10 Catlin M J, Dressendorfer R H. Effect of shoe weight on the energy cost of running.  Med Sci Sports Exerc. 1979;  11 80
  • 11 Cavanagh P R, Lafortune M A. Ground reaction forces in distance running.  J Biomech. 1980;  13 397-406
  • 12 Chang Y H, Huang H W, Hamerski C M, Kram R. The independent effects of gravity and inertia on running mechanics.  J Exp Biol. 2000;  203 229-238
  • 13 Clarke T E, Frederick E C, Cooper L B. Effects of shoe cushioning upon ground reaction forces in running.  Int J Sports Med. 1983;  4 247-251
  • 14 De Wit B, De Clercq D, Aerts P. Biomechanical analysis of the stance phase during barefoot and shod running.  J Biomech. 2000;  33 269-278
  • 15 Divert C, Mornieux G, Müller S, Baur H, Belli A, Mayer F. Re-evaluation of the influence of shoe on running pattern with a new treadmill ergometer.  Med Sci Sports Exerc. 2003;  5 237
  • 16 Ferris D P, Louie M, Farley C T. Running in the real world: adjusting leg stiffness for different surfaces.  Proc R Soc Lond B Biol Sci. 1998;  265 989-994
  • 17 Frederick E C, Hagy J L. Factors affecting peak vertical ground reaction forces in running.  Int J Sport Biomech. 1986;  2 41-49
  • 18 Freychat P, Belli A, Carret J P, Lacour J R. Relationship between rearfoot and forefoot orientation and ground reaction forces during running.  Med Sci Sports Exerc. 1996;  28 225-232
  • 19 Hardin E C, Hamill J, Li L. Midsole-surface influence on muscle activation and impact shock.  Int Soc Electrophysiol Kinesiol. 1998;  1 142-143
  • 20 Herzog W, Nigg B M, Read L J, Olsson E. Asymmetries in ground reaction force patterns in normal human gait.  Med Sci Sports Exerc. 1989;  21 110-114
  • 21 Kadaba M P, Wootten M E, Gainey J, Cochran G V. Repeatability of phasic muscle activity: performance of surface and intramuscular wire electrodes in gait analysis.  J Orthop Res. 1985;  3 350-359
  • 22 Komi P V. Strength and power in sport.  Encyclopaedia of Sports Medicine. 1992;  3 169-179
  • 23 Komi P V, Gollhofer A, Schmidtbleicher D, Frick U. Interaction between man and shoe in running: considerations for a more comprehensive measurement approach.  Int J Sports Med. 1987;  8 196-202
  • 24 Nachbauer W, Nigg B M. Effects of arch height of the foot on ground reaction forces in running.  Med Sci Sports Exerc. 1992;  24 1264-1269
  • 25 Nigg B M. Biomechanics of Running Shoes. Champaign, Illinois; Human Kinetics Publishers 1986: 139-159
  • 26 Nigg B M, Bahlsen A H. Influence of heel flare and midsole construction on pronation, supination, and impact forces for heel-toe running.  Int J Sport Biomech. 1988;  4 205-219
  • 27 Nigg B M, Wakeling J M. Impact forces and muscle tuning: a new paradigm.  Exerc Sport Sci Rev. 2001;  29 37-41
  • 28 Nilsson J, Thorstensson A. Ground reaction forces at different speeds of human walking and running.  Acta Physiol Scand. 1989;  136 217-227
  • 29 Schieb D A. Kinematic accomodation of novice treadmill runners.  Res Quart Exerc Sport. 1986;  57 1-7
  • 30 Shiavi R, Frigo C, Pedotti A. Electromyographic signals during gait: criteria for envelope filtering and number of strides.  Med Biol Eng Comput. 1998;  36 171-178
  • 31 Williams K R. Biomechanics of running.  Exerc Sport Sci Rev. 1985;  13 389-441
  • 32 Winter D A. The Biomechanics and Motor Control of Human Gait. Waterloo, Canada; University of Waterloo Press 1991
  • 33 Winter D A, Yack H J. EMG profiles during normal human walking: stride-to-stride and inter-subject variability.  Electroencephalogr Clin Neurophysiol. 1987;  67 402-411

1 The work was undertaken at the Laboratoire de Physiologie - GIP E2S, Pavillon 12, Hôpital St Jean Bonnefonds, 42055 Saint-Etienne Cedex 2, France

C. Divert

Laboratoire de Physiologie - GIP E2S

Pavillon 12, Hôpital St Jean Bonnefonds

42055 Saint-Etienne Cedex 2

France

Phone: + 33477127985

Fax: + 33 4 77 12 72 29

Email: caroline.divert@univ-st-etienne.fr