Osteosynthesis and Trauma Care 2004; 12(3): 100-107
DOI: 10.1055/s-2004-822772
Original Article

© Georg Thieme Verlag Stuttgart · New York

The Biomechanics of Intramedullary Fixation Devices for the Lower Limb

E. L. Milne1 , L. L. Latta1 , S. Malik1 , G. Brusovanik1
  • 1Max Biedermann Institute for Biomechanics, Miami Beach, FL, USA
Further Information

Publication History

Publication Date:
06 September 2004 (online)

Abstract

Objectives: The purpose of this paper is to report on the mechanical behavior of a large variety of intramedullary fixation devices in a manner that reflects their potential clinical behavior.
Design: The mechanical failure modes associated with intramedullary fixation devices clinically were reproduced by a series of in vitro tests in cadaver bones and then in synthetic models in an effort to produce a simple and reliable means of evaluating their potential clinical mechanical performance. The results of static and fatigue tests using these methods are reported. The biomechanical properties of a large variety of designs of intramedullary fixation devices are compared.
Setting: Biomechanics laboratory of a medical school at a major medical center.
Main Outcome Measure: Structural bending stiffness, bending strength, fatigue strength and mechanical failure modes were measured and recorded.
Results: Since 1986 almost 2 000 components of 185 designs and sizes of femoral and tibial IMFD's from 9 different manufacturers have been tested.

References

  • 1 ASTM Standards. Standard specification and test methods for intramedullary fixation devices. In: 2003 Annual Book of ASTM Standards, Vol. 13.01, F 1264-03
  • 2 Bankston A, Keating E, Saha S, Engelhardt J. Biomechanical evaluation of intramedullary rods used in distal femoral shaft fractures.  Trans 32nd Orthop Res Soc. 1986;  11 317
  • 3 Boccardi R, Ross S, Pedotti A, Rodano R, Santambrogio G. Evaluation of muscular moments at the lower limb joints by an on-line processing of kinematic data and ground reaction.  J Biom. 1981;  14 35
  • 4 Daniels A, Bayne N, Hofmann A. In: Harvey J, Daniels A, Games R (eds). Intramedullary rods: clinical performance and related laboratory testing. Mechanical properties of Küntscher nail sections. ASTM, Philadelphia, PA 1989; 3-9
  • 5 Giles J, DeLee J, Heckman J, Keever J. Supracondylar fractures of the femur treated with a supracondylar plate and lag screw.  J Bone Joint Surg [Am]. 1982;  6 864-870
  • 6 Hubbard M. The treatment of femoral shaft fractures in the elderly.  J Bone Joint Surg [Br]. 1974;  56 96-101
  • 7 Hutson J, Zych G. Comparison of treatment techniques for distal femoral fractures in the elderly. Unpublished report presented in 1986
  • 8 Hutson J, Zych G, Cole D, Johnson K, Ostermann P, Milne E, Latta L. Mechanical failures of intramedullary nails applied without reaming.  Clin Orthop. 1995;  315 129-137
  • 9 Johnson K, Tencer A, Blumenthal S, August A, Johnston W. Biomechanical performance of pocked intramedullary nail systems in comminuted femoral shaft fractures.  Clin Orthop. 1986;  206 151-161
  • 10 Kempf I, Grosse A, Beck G. Closed locked intramedullary nailing - its application to combined fractures of the femur.  J Bone Joint Surg [Am]. 1985;  67 709-720
  • 11 Kyle R. Biomechanics of intramedullary fracture fixation.  Orthopäde. 1985;  8 1356-1359
  • 12 Latta L, Zych G, Greenbarg P, Milne E. In: Harvey J, Daniels A, Games R (eds). Intramedullary rods: clinical performance and related laboratory testing. Distal locking I.M. nail fixation in normal and osteoporotic femora. ASTM, Philadelphia, PA 1989
  • 13 McKellop H, Ebramzadeh E, Matta J, Wiss D, Sarmiento A. Stability of femoral fractures with interlocking intramedullary rods.  Trans 30th Orthop Res Soc. 1984;  9 319
  • 14 McKellop H, Ebramzadeh E, Fortune J, Sarmiento A. In: Harvey J, Daniels A, Games R (eds). Intramedullary rods: clinical performance and related laboratory testing. Stability of subtrochanteric fractures fixed with intramedullary rods. ASTM, Philadelphia, PA 1989
  • 15 Morrison J. Mechanics of the knee joint in relation to normal walking.  J Biom. 1970;  3 51-61
  • 16 Nagano J, Hoeltzel D, Simon F, Gustilo R. The rotational and bending stability of intramedullary nailing in distal fourth tibial fractures.  Trans 29th Orthop Res Soc. 1983;  8 305
  • 17 Schatzker J, Lambert D. Supracondylar fractures of the femur.  Clin Orthop. 1979;  138 77-83
  • 18 Tencer A, Johnson K, Johnston W, Gill K. A biomechanical comparison of various methods of stabilization of subtrochanteric fractures of the femur.  J Orthop Res. 1984;  3 297-305
  • 19 Thimsen D, Hoeltzel D, Kyle R. A biomechanical analysis of the Grosse-Kempf interlocking intramedullary nail in torsion and 4- point bending.  Trans 30th Orthop Res Soc. 1984;  9 70
  • 20 Thoresen B, Alho A, Ekeland A, Strömsöe K, Folleräs G, Haukebö A. Interlocking intramedullary nailing in femoral shaft fractures. A report of forty-eight cases.  J Bone Joint Surg [Am]. 1985;  67 1313-1320
  • 21 Winquist R, Hanson S, Clawson D. Closed intramedullary nailing of femoral fractures - A report of five hundred and twenty cases.  J Bone Joint Surg [Am]. 1984;  66 529-539
  • 22 Wright D, Desai S, Henderson W. Action of the subtalar and ankle-joint complex during the stance phase of walking.  J Bone Joint Surg [Am]. 1964;  46 361-382

Edward L. Milne

Mount Sinai Medical Center

4300 Alton Road

Miami Beach, FL 33140

USA

Phone: Phone: +1/3 05-6 74-27 90

Fax: +1 /3 05-6 74-21 98

Email: tmilne@msmc.com