References
1
Paolesse R. In Syntheses of Corroles, The Porphyrin Handbook
Vol 2:
Kadish KM.
Smith KM.
Guilard R.
Academic Press;
San Diego:
2000.
Chap. 11.
p.201-232
2
Gross Z.
Simkhovich L.
Galili N.
Chem. Commun.
1999,
599
3
Simkhovich L.
Mahammed A.
Goldberg I.
Gross Z.
Chem.-Eur. J.
2001,
7:
1041
4
Simkhovich L.
Gross Z.
Tetrahedron Lett.
2001,
42:
8089
5
Aviezer D.
Cotton S.
David M.
Segev A.
Khaselev N.
Galili N.
Gross Z.
Yayon A.
Cancer Res.
2000,
60:
2973
6 For a recent review on the recent synthetic methodologies leading to corroles and core-modified corroles see: Gryko DT.
Eur. J. Org. Chem.
2002,
1735
7
Gross Z.
Galili N.
Saltsman I.
Angew. Chem. Int. Ed.
1999,
38:
1427
8
Paolesse R.
Nardis S.
Sagone F.
Khoury RG.
J. Org. Chem.
2001,
66:
550
9
Collman JP.
Decréau RA.
Tetrahedron Lett.
2003,
44:
1207
10
Neya S.
Ohyama K.
Funasaki N.
Tetrahedron Lett.
1997,
38:
4113
11
Licoccia S.
Vona MLD.
Paolesse R.
J. Org. Chem.
1998,
63:
3190
12
Ka J.-W.
Cho W.-S.
Lee C.-H.
Tetrahedron Lett.
2000,
41:
8121
13
Asokan CV.
Smeets S.
Dehaen W.
Tetrahedron Lett.
2001,
42:
4483
14
Brinas RP.
Bruckner C.
Synlett
2001,
442
15
Broring M.
Hell C.
Chem. Commun.
2001,
2336
16
Gryko DT.
Piechota KE.
J. Porphyrins Phthalocyanines
2002,
6:
81
17
Decréau RA.
Collman JP.
Tetrahedron Lett.
2003,
44:
3323
18
Paolesse R.
Jaquinod L.
Senge MO.
Smith KM.
J. Org. Chem.
1997,
62:
6193
19
Mahammed A.
Giladi I.
Goldberg I.
Gross Z.
Chem.-Eur. J.
2001,
7:
4259
20
Mahammed A.
Goldberg I.
Gross Z.
Org. Lett.
2001,
3:
3443
21
Andrioletti B.
Rose E.
Chem. Commun.
2002,
715
22
Saltsman I.
Mahammed A.
Goldberg I.
Tkachenko E.
Botoshansky M.
Gross Z.
J. Am. Chem. Soc.
2002,
124:
7411
23
Saltsman I.
Goldberg I.
Gross Z.
Tetrahedron Lett.
2003,
44:
5669
24
Tomé AC.
Lacerda PSS.
Neves MGPMS.
Cavaleiro JAS.
Chem. Commun.
1997,
1199
25
Silva AMG.
Tomé AC.
Neves MGPMS.
Cavaleiro JAS.
Tetrahedron Lett.
2000,
41:
3065
26
Silva AMG.
Tomé AC.
Neves MGPMS.
Silva AMS.
Cavaleiro JAS.
Chem. Commun.
1999,
1767
27
Silva AMG.
Tomé AC.
Neves MGPMS.
Silva AMS.
Cavaleiro JAS.
Perrone D.
Dondoni A.
Tetrahedron Lett.
2002,
43:
603
28
Silva AMG.
Tomé AC.
Neves MGPMS.
Cavaleiro JAS.
Synlett
2002,
1155
29 Corrole 1 was prepared by following the procedure described in ref. 8.
30 Spectroscopic data for 2: 1H NMR (300 MHz, CDCl3): δ = 9.40 (d, 1 H, J = 4.1 Hz, H-18), 8.69 (d, 1 H, J = 4.1 Hz, H-17), 8.75 and 8.53 (2 d, 2 H, J = 4.7 Hz, H-7,8 or H-12,13), 8.60 and 8.41 (2 d, 2 H, J = 4.4 Hz, H-7,8 or H-12,13), 8.08 (s, 2 H, H-2′,14′), 7.70 (s, 2 H, H-7′,9′), 7.68-7.65 and 7.31-7.28 (2 m, 8 H, H-6′,10′,3′,13′ and H-5′,11′,4′,12′), 7.06 (s, 1 H, H-1′), 5.69 (s, 1 H, H-8′). 13C NMR (75 MHz, CDCl3, based on the HSQC and HMBC spectra): δ = 129.5 (C-β), 127.9 (C-β), 127.5 (C-6′,10′,3′,13′), 126.1 (C-5′,11′,4′,12′), 125.8 (C-β), 125.2 (C-β), 123.1 (C-17), 122.8 (C-2′,14′), 122.4 (C-7′,9′), 117.0 (C-18). HRMS-FAB [M]+: m/z = 1072.1698 (calcd for C59H23N4F15: 1072.1683). UV/Vis (CH2Cl2): λmax (log ε) = 411 (5.82), 567 (5.07), 609 nm (4.88).
31 Spectroscopic data for 3: 1H NMR (300 MHz, CDCl3): δ = 8.66 and 8.43 (2 d, 4 H, J = 4.7 Hz, H-7,13 and H-8,12), 8.39 (s, 4 H, H-2′,14′,7′′,9′′), 7.81 (s, 4 H, H-7′,9′,2′′,14′′), 7.82-7.80 (m, 4 H, H-6′,10′,3′′,13′′), 7.79-7.76 (m, 4 H, H-13′,3′,6′′,10′′), 7.56 (s, 2 H, H-1′,8′′), 7.47-7.39 (m, 8 H, H-4′,12′,5′′,11′′ and H-5′,11′,4′′,12′′), 5.78 (s, 2 H, H-8′,1′′). 13C NMR (75 MHz, CDCl3): δ = 141.7 and 141.6 (C-1′a,7′a,8′a,14′a,1′′a,7′′a,8′′a,14′′a), 138.0 (C-2,3,17,18), 131.9 and 131.8 (C-2′a,6′a,9′a,13′a,2′′a,6′′a,9′′a,13′′a), 128.0 (C-7,13 or C-8,12), 127.7 and 127.5 (C-6′,10′,3′′,13′′), 126.9 (C-7,13 or C-8,12), 126.35 and 126.29 (C-4′,12′,5′′,11′′ and C-5′,11′,4′′,12′′), 122.7 (C-2′,14′,7′′,9′′), 122.6 (C-7′,9′,2′′,14′′), 50.4 (C-1′,8′′), 49.5 (C-8′,1′′). HRMS (ES) [M + H]+: m/z = 1349.2747 (calcd for C81H36N4F15: 1349.2695). UV/Vis (CH2Cl2): λmax (log ε) = 415 (5.14), 573 (4.44), 612 nm (4.23).
32 Spectroscopic data for 5: 1H NMR (300 MHz, CDCl3): δ = 8.64 (d, 2 H, J = 4.5 Hz, H-7,13 or H-8,12), 8.61 (s, 2 H, H-3,17), 8.47 (d, 2 H, J = 4.5 Hz, H-7,13 or H-8,12), 8.57 (s, 2 H, H-3,17), 8.19 (s, 4 H, H-2′,7′,9′,14′), 7.72-7.69 and 7.28-7.25 (2 m, 8 H, H-3′,6′,10′,13′ and H-4′,5′,11′,12′), 6.68 (s, 2 H, H-1′,8′). 13C NMR (75 MHz, CDCl3, based on the HSQC and HMBC spectra): δ = 138.0 (C-1′a,7′a,8′a,14′), 132.6 (C-2′a,6′a,9′,13′), 127.5 (C-2′,7′,9′,14′), 127.2 (C-3′,6′,10′,13′), 126.0 (C-4′,5′,11′,12′), 125.0 and 124.7 (C-7,13 and C-8,12), 115.6 (C-1′,8′). HRMS-FAB [M + H]+: m/z = 1073.1791 (calcd for C59H24N4F15: 1073.1761). UV/Vis (CH2Cl2): λmax (log ε) = 424 (5.01), 565 (4.07), 615 nm (3.91).
33 Examples of thermal [4+4] cycloaddition reactions have been reported in the literature. In some cases [4+4] cycloadditions compete with Diels-Alder reactions.
[34-37]
34
Toda M.
Okada K.
Oda M.
Tetrahedron Lett.
1988,
29:
2329
35
Chou T.-S.
Chang R.-C.
J. Org. Chem.
1993,
58:
493
36
Chou T.-S.
Chen H.-C.
Tsai C.-Y.
J. Org. Chem.
1994,
59:
2241
37
Leung M.-K.
Trahanovsky WS.
J. Am. Chem. Soc.
1995,
117:
841