Horm Metab Res 2004; 36(11/12): 766-770
DOI: 10.1055/s-2004-826161
Review
© Georg Thieme Verlag KG Stuttgart · New York

Physiology of GLP-1 - Lessons from Glucoincretin Receptor Knockout Mice

B.  Thorens1
  • 1 Department of Physiology, University of Lausanne, Lausanne, Switzerland
Further Information

Publication History

Received 20 July 2004

Accepted after revision 4 August 2004

Publication Date:
18 January 2005 (online)

Abstract

GLP-1 has both peripheral and central actions, as this hormone is secreted by gut endocrine cells and brainstem neurons projecting into the hypothalamus and other brain regions. GLP-1 has multiple regulatory functions participating in the control of glucose homeostasis, β-cell proliferation and differentiation, food intake, heart rate and even learning. GLP-1 action depends on binding to a specific G-coupled receptor linked to activation of the adenylyl cyclase pathway. Analysis of mice with inactivation of the GLP-1 receptor gene has provided evidence that absence of GLP-1 action in the mouse, despite this hormone potent physiological effects when administered in vivo, only leads to mild abnormalities in glucose homeostasis without any change in body weight. However, a critical role for this hormone and its receptor was demonstrated in the function of the hepatoportal vein glucose sensor, in contrast to that of the pancreatic β-cells, although absence of both GLP-1 and GIP receptors leads to a more severe phenotype characterized by a β-cell-autonomous defect in glucose-stimulated insulin secretion. Together, the studies of these glucoincretin receptor knockout mice provide evidence that these hormones are part of complex regulatory systems where multiple redundant signals are involved.

References

  • 1 Vrang N, Phifer C B, Corkern M M, Berthoud H R. Gastric distension induces c-Fos in medullary GLP-1/2-containing neurons.  Am J Physiol Regul Integr Comp Physiol. 2003;  285 R470 - 478. Epub 2003 Apr 24
  • 2 Thorens B, Larsen P J. Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis.  Curr Opin Clin Nutr Metab Care. 2004;  7 471-847
  • 3 During M J, Cao L, Zuzga D S, Francis J S, Fitzsimons H L, Jiao X, Bland R J, Klugmann M, Banks W A, Drucker D J, Haile C N. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection.  Nat Med. 2003;  9 1173 - 1179. Epub 2003 Aug 17
  • 4 Thorens B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide I.  Proc Natl Acad Sci USA. 1992;  89 8641-8645
  • 5 Mayo K E, Miller L J, Bataille D, Dalle S, Goke B, Thorens B, Drucker D J. International Union of Pharmacology. XXXV. The glucagon receptor family.  Pharmacol Rev. 2003;  55 167-194
  • 6 Scrocchi L A, Brown T J, MacLusky N, Brubaker P L, Auerbach A B, Joyner A L, Drucker D J. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide-1 receptor gene.  Nature Medicine. 1996;  2 1254-1258
  • 7 Scrocchi L A, Drucker D J. Effects of aging and a high-fat diet on body weight and glucose tolerance in glucagon-like peptide-1 receptor -/- mice.  Endocrinology. 1998;  139 3127-3132
  • 8 Scrocchi L A, Hill M E, Saleh J, Perkins B, Drucker D J. Elimination of glucagon-like peptide 1R signaling does not modify weight gain and islet adaptation in mice with combined disruption of leptin and GLP-1 action.  Diabetes. 2000;  49 1552-1560
  • 9 MacLusky N J, Cook S, Scrocchi L, Shin J, Kim J, Vaccarino F, Asa S L, Drucker D J. Neuroendocrine function and response to stress in mice with complete disruption of glucagon-like peptide-1 receptor signaling.  Endocrinology. 2000;  141 752-762
  • 10 Flamez D, Van Breusegem A, Scrocchi L A, Quartier E, Pipeleers D, Drucker D J, Schuit F. Mouse pancreatic b-cells exhibit preserved glucose competence after disruption of the glucagon-like peptide-1 receptor gene.  Diabetes. 1998;  47 646-652
  • 11 Pederson R A, Satkunarajah M, McIntosh C H, Scrocchi L A, Flamez D, Schuit F, Drucker D J, Wheeler M B. Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon-like peptide 1 receptor -/- mice.  Diabetes. 1998;  47 1046-1052
  • 12 Flamez D, Gilon P, Moens K, van Breusegem A, Delmeire D, Scrocchi L A, Henquin J C, Drucker D J, Schuit F. Altered cAMP and Ca2+ signaling in mouse pancreatic islets with glucagon-like peptide-1 receptor null phenotype.  Diabetes. 1999;  48 1979-1986
  • 13 Rolin B, Larsen M O, Gotfredsen C F, Deacon C F, Carr R D, Wilken M, Knudsen L B. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice.  Am J Physiol Endocrinol Metab. 2002;  283 E745-E752
  • 14 Tourrel C, Bailbe D, Lacorne M, Meile M-J, Kergoat M, Portha B. Persistent improvement of type 2 diabetes in the Goto-Kakizaki rat model by expansion of the b-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4.  Diabetes. 2002;  51 1443-1452
  • 15 Tourrel C, Bailbe D, Meile M J, Kergoat M, Portha B. Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age.  Diabetes. 2001;  50 1562-1570
  • 16 Xu G, Stoffers D A, Habener J F, Bonner-Weir S. Exendin-4 stimulates both b-cell replication and neogenesis, resulting in increased b-cell mass and improved glucose tolerance in diabetic rats.  Diabetes. 1999;  48 2270-2276
  • 17 Zhou J, Pineyro M A, Wang X, Doyle M E, Egan J M. Exendin-4 differentiation of a human pancreatic duct cell line into endocrine cells: involvement of PDX-1 and HNF3beta transcription factors.  J Cell Physiol. 2002;  192 304-314
  • 18 Zhou J, Wang X, Pineyro M A, Egan J M. Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells.  Diabetes. 1999;  48 2358-2366
  • 19 Egan J M, Bulotta A, Hui H, Perfetti R. GLP-1 receptor agonists are growth and differentiation factors for pancreatic islet beta cells.  Diabetes Metab Res Rev. 2003;  19 115-123
  • 20 Abraham E J, Leech C A, Lin J C, Zulewski H, Habener J F. Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells.  Endocrinology. 2002;  143 3152-3161
  • 21 Movassat J, Beattie G M, Lopez A D, Hayek A. Exendin 4 up-regulates expression of PDX 1 and hastens differentiation and maturation of human fetal pancreatic cells.  J Clin Endocrinol Metab. 2002;  87 4775-4781
  • 22 De Leon D D, Deng S, Madani R, Ahima R S, Drucker D J, Stoffers D A. Role of endogenous glucagon-like peptide-1 in islet regeneration after partial pancreatectomy.  Diabetes. 2003;  52 365-371
  • 23 Farilla L, Hui H, Bertolotto C, Kang E, Bulotta A, di Mario U, Perfetti R. Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats.  Endocrinology. 2002;  143 4397-4408
  • 24 Li Y, Hansotia T, Yusta B, Ris F, Halban P A, Drucker D J. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis.  J Biol Chem. 2003;  278 471-478
  • 25 Gardemann A, Strulik H, Jungermann K. A portal-arterial glucose concentration gradient as a signal for an insulin-dependent net glucose uptake in perfused rat liver.  FEBS letters. 1986;  202 255-259
  • 26 Hamilton-Wessler M, Bergman R N, Halter J B, Watanabe R M, Donovan C M. The role of liver glucosensors in the integrated sympathetic response induced by deep hypoglycemia in dogs.  Diabetes. 1994;  43 1052-1060
  • 27 Hevener A L, Bergman R N, Donovan C M. Novel glucosensor for hypoglycemic detection localized to the portal vein.  Diabetes. 1997;  46 1521-1525
  • 28 Hevener A L, Bergman R N, Donovan C M. Hypoglycemic detection does not occur in the hepatic artery or liver.  Diabetes. 2001;  50 399-403
  • 29 Burcelin R, Crivelli V, Perrin C, da Costa A, Mu J, Kahn B B, Birnbaum M J, Kahn C R, Vollenweider P, Thorens B. GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor-stimulated muscle glucose utilization.  J Clin Invest. 2003;  111 1555-1562
  • 30 Niijima A. Afferent impulse discharges from glucoreceptors in the liver of the guinea pig.  annals New York Academy of Sciences. 1969;  157 690-700
  • 31 Niijima A. Glucose-sensitive afferent nerve fibres in the hepatic branch of the vagus nerve in the guinea-pig.  Journal of Physiology. 1982;  332 315-323
  • 32 Nakabayashi H, Nishizawa M, Nakagawa A, Takeda R, Niijima A. Vagal hepatopancreatic reflex effect evoked by intraportal appearance of tGLP-1.  American Journal of Physiology. 1996;  271 E808-E813
  • 33 Nishizawa M, Nakabayashi H, Uchida K, Nakagawa A, Niijima A. The hepatic vagal nerve is receptive to incretin hormone glucagon-like peptide-1, but not to glucose-dependent insulinotropic polypeptide, in the portal vein.  Journal of the Autonomic Nervous System. 1996;  61 149-154
  • 34 Balkan B, Li X. Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms.  American Journal of Physiology. 2000;  279 R1449-R1454
  • 35 Burcelin R, DaCosta A, Drucker D, Thorens B. Glucose competence of the hepatoporal vein sensor requires the presence of an activated GLP-1 receptor.  Diabetes. 2001;  50 1720-1728
  • 36 Preitner F, Ibberson M, Franklin I, Binnert C, Pende M, Gjinovici A, Hansotia T, Drucker D J, Wollheim C B, Burcelin R, Thorens B. Gluco-incretin control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J. Clin.  Invest.. 2004;  113 635-645
  • 37 Rolin B, Deacon C F, Carr R D, Ahren B. The major glucagon-like peptide-1 metabolite, GLP-1-(9-36) -amide, does not affect glucose or insulin levels in mice.  Eur J Pharmacol. 2004;  494 283-288
  • 38 Burcelin R, Dolci W, Thorens B. Glucose sensing by the hepatoportal sensor is GLUT2-dependent. In vivo analysis in GLUT2-null mice.  Diabetes. 2000;  49 1643-1648
  • 39 Ahren B. Sensory nerves contribute to insulin secretion by glucagon-like peptide-1 in mice.  Am J Physiol Regul Integr Comp Physiol. 2004;  286 R269-R272
  • 40 Hansotia T, Baggio L L, Delmeire D, Hinke S A, Yamada Y, Tsukiyama K, Seino Y, Holst J J, Schuit F, Drucker D J. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors.  Diabetes. 2004;  53 1326-1335

B. Thorens

Department of Physiology, University of Lausanne

27 rue du Bugnon · CH-1005 Lausanne · Switzerland

Phone: +41 (21) 692 53 90

Fax: +41 (21) 692 53 55

Email: Bernard.Thorens@unil.ch