Horm Metab Res 2004; 36(11/12): 830-836
DOI: 10.1055/s-2004-82617
Review
© Georg Thieme Verlag KG Stuttgart · New York

Extrapancreatic Effects of GIP and GLP-1

A.  Vella1 , R.  A.  Rizza1
  • 1 Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Mayo Clinic & Foundation, Rochester MN, USA
Further Information

Publication History

Received 31 July 2004

Accepted after revision 11 August 2004

Publication Date:
18 January 2005 (online)

Abstract

Incretin-based therapy promises to be a useful adjunct in the treatment of diabetes. Glucagon-like peptide-1 (GLP1) and, to a lesser extent, glucose-dependent insulinotropic polypeptide (GIP) are potent stimulators of insulin secretion, and consequently have significant effects on the regulation of the glucose metabolism. What has been less clear, however, is whether these hormones exert direct effects on glucose metabolism independent of their effect on pancreatic insulin and glucagon release. Glucose effectiveness and insulin action (the ability of glucose and insulin respectively to stimulate glucose uptake and suppress glucose release) have been reported by some investigators, but not others, to improve during incretin infusion. The purpose of this review is briefly to examine some of the numerous conflicting reports in the literature as to the presence or otherwise of extrapancreatic incretin effects. In addition, we will briefly discuss the gastrointestinal effects of incretins. These effects may be of considerable importance in the treatment of postprandial hyperglycemia although they are not, strictly speaking, the result of a direct incretin effect on glucose metabolism.

References

  • 1 McCance D R. et al . Comparison of tests for glycated haemoglobin and fasting and two hour plasma glucose concentrations as diagnostic methods for diabetes.  Bmj. 1994;  308 (6940) 1323-1328
  • 2 Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus.  Diabetes Care. 1997;  20 (7) 1183-1197
  • 3 UK Prospective Diabetes Study (UKPDS) Group . Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34).  Lancet. 1998;  35 (9131) 854-865
  • 4 UK Prospective Diabetes Study (UKPDS) Group. . Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).  Lancet. 1998;  352 (9131) 837-853
  • 5 Heine R J. et al . What does postprandial hyperglycaemia mean?.  Diabet Med. 2004;  21 (3) 208-213
  • 6 Shah P. et al . Impact of lack of suppression of glucagon on glucose tolerance in humans.  Am J Physiol. 1999;  277 (2 Pt 1) E283-E290
  • 7 Shah P. et al . Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus.  J Clin Endocrinol Metab. 2000;  85 (11) 4053-4059
  • 8 Vella A. et al . Effects of pramlintide, an amylin analogue, on gastric emptying in type 1 and 2 diabetes mellitus.  Neurogastroenterol Motil. 2002;  14 (2) 123-131
  • 9 Dinneen S F. Mechanism of postprandial hyperglycaemia in diabetes mellitus.  Eur J Gastroenterol Hepatol. 1995;  7 (8) 724-729
  • 10 Basu A. et al . Impaired basal glucose effectiveness in NIDDM: contribution of defects in glucose disappearance and production, measured using an optimized minimal model independent protocol.  Diabetes. 1997;  46 (3) 421-432
  • 11 Basu A. et al . Effects of a change in the pattern of insulin delivery on carbohydrate tolerance in diabetic and nondiabetic humans in the presence of differing degrees of insulin resistance.  J Clin Invest. 1996;  97 (10) 2351-2361
  • 12 Vella A, Camilleri M, Rizza R A. The gastrointestinal tract and glucose tolerance.  Curr Opin Clin Nutr Metab Care. 2004;  7 (4) 479-484
  • 13 Frank J W. et al . Mechanism of accelerated gastric emptying of liquids and hyperglycemia in patients with type II diabetes mellitus.  Gastroenterology. 1995;  109 (3) 755-765
  • 14 Meier J J, Nauck M A. The potential role of glucagon-like peptide 1 in diabetes.  Curr Opin Investig Drugs. 2004;  5 (4) 402-410
  • 15 Drucker D J. Minireview: the glucagon-like peptides.  Endocrinology. 2001;  142 (2) 521-527
  • 16 Drucker D J. Development of glucagon-like peptide-1-based pharmaceuticals as therapeutic agents for the treatment of diabetes.  Curr Pharm Des. 2001;  7 (14) 1399-1412
  • 17 Vahl T, D’Alessio D. Enteroinsular signaling: perspectives on the role of the gastrointestinal hormones glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide in normal and abnormal glucose metabolism.  Curr Opin Clin Nutr Metab Care. 2003;  6 (4) 461-468
  • 18 Kieffer T J. Gastro-intestinal hormones GIP and GLP-1.  Ann Endocrinol (Paris). 2004;  65 (1) 13-21
  • 19 Kieffer T J, Habener J F. The glucagon-like peptides.  Endocr Rev. 1999;  20 (6) 876-913
  • 20 Pederson R A. et al . Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon-like peptide 1 receptor -/- mice.  Diabetes. 1998;  47 (7) 1046-1052
  • 21 Rocca A S, Brubaker P L. Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion.  Endocrinology. 1999;  140 (4) 1687-1694
  • 22 Hansen L, Holst J J. The effects of duodenal peptides on glucagon-like peptide-1 secretion from the ileum. A duodeno-ileal loop?.  Regul Pept. 2002;  110 (1) 39-45
  • 23 Balks H J. et al . Rapid oscillations in plasma glucagon-like peptide-1 (GLP-1) in humans: cholinergic control of GLP-1 secretion via muscarinic receptors.  J Clin Endocrinol Metab. 1997;  82 (3) 786-790
  • 24 Ahren B. et al . Improved glucose tolerance and insulin secretion by inhibition of dipeptidyl peptidase IV in mice.  Eur J Pharmacol. 2000;  404 (1 - 2) 239-245
  • 25 Ahren B, Holst J J. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia.  Diabetes. 2001;  50 (5) 1030-1038
  • 26 D’Alessio D A. et al . Elimination of the action of glucagon-like peptide 1 causes an impairment of glucose tolerance after nutrient ingestion by healthy baboons.  J Clin Invest. 1996;  97 (1) 133-138
  • 27 Edwards C M. et al . Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39.  Diabetes. 1999;  48 (1) 86-93
  • 28 Hui H. et al . Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5’-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway.  Endocrinology. 2003;  144 (4) 1444-1455
  • 29 Delgado E. et al . Glucagon-like peptide-1 binding to rat skeletal muscle.  Peptides. 1995;  16 (2) 225-229
  • 30 Villanueva-Penacarrillo M L. et al . Potent glycogenic effect of GLP-1(7-36)amide in rat skeletal muscle.  Diabetologia. 1994;  37 (11) 1163-1166
  • 31 Villanueva-Penacarrillo M L. et al . Glucagon-like peptide-1 binding to rat hepatic membranes.  J Endocrinol. 1995;  146 (1) 183-189
  • 32 Valverde I. et al . Presence and characterization of glucagon-like peptide-1(7 - 36) amide receptors in solubilized membranes of rat adipose tissue.  Endocrinology. 1993;  132 (1) 75-79
  • 33 Egan J M. et al . Glucagon-like peptide-1(7-36) amide (GLP-1) enhances insulin-stimulated glucose metabolism in 3T3-L1 adipocytes: one of several potential extrapancreatic sites of GLP-1 action.  Endocrinology. 1994;  135 (5) 2070-2075
  • 34 Miki H. et al . Glucagon-like peptide-1(7-36)amide enhances insulin-stimulated glucose uptake and decreases intracellular cAMP content in isolated rat adipocytes.  Biochim Biophys Acta. 1996;  1312 (2) 132-136
  • 35 Merida E. et al . Presence of glucagon and glucagon-like peptide-1-(7-36)amide receptors in solubilized membranes of human adipose tissue.  J Clin Endocrinol Metab. 1993;  77 (6) 1654-1647
  • 36 Ghiglione M. et al . Glucagon-like peptide-1 does not have a role in hepatic carbohydrate metabolism.  Diabetologia. 1985;  28 (12) 920-921
  • 37 Furnsinn C, Ebner K, Waldhausl W. Failure of GLP-1(7-36)amide to affect glycogenesis in rat skeletal muscle.  Diabetologia. 1995;  38 (7) 864-657
  • 38 Nakagawa Y. et al . Glucagon-like peptide-1(7-36) amide and glycogen synthesis in the liver.  Diabetologia. 1996;  39 (10) 1241-1242
  • 39 Yang H. et al . GLP-1 action in L6 myotubes is via a receptor different from the pancreatic GLP-1 receptor.  Am J Physiol. 1998;  275 (3 Pt 1) C675-C683
  • 40 Luque M A. et al . Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human myocytes.  J Endocrinol. 2002;  173 (3) 465-473
  • 41 Acitores A. et al . Cell signalling of glucagon-like peptide-1 action in rat skeletal muscle.  J Endocrinol. 2004;  180 (3) 389-398
  • 42 Benito E, Blazquez E, Bosch M A. Glucagon-like peptide-1-(7-36)amide increases pulmonary surfactant secretion through a cyclic adenosine 3’,5’-monophosphate-dependent protein kinase mechanism in rat type II pneumocytes.  Endocrinology. 1998;  139 (5) 2363-2368
  • 43 Vara E. et al . Glucagon-like peptide-1(7-36) amide stimulates surfactant secretion in human type II pneumocytes.  Am J Respir Crit Care Med. 2001;  163 (4) 840-846
  • 44 Shughrue P J, Lane M V, Merchenthaler I. Glucagon-like peptide-1 receptor (GLP1-R) mRNA in the rat hypothalamus.  Endocrinology. 1996;  137 (11) 5159-5162
  • 45 Turton M D. et al . A role for glucagon-like peptide-1 in the central regulation of feeding.  Nature. 1996;  379 (6560) 69-72
  • 46 Wei Y, Mojsov S. Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences.  FEBS Lett. 1995;  358 (3) 219-224
  • 47 Goke R. et al . Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites.  Eur J Neurosci. 1995;  7 (11) 2294-2300
  • 48 Tang-Christensen M. et al . Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats.  Am J Physiol. 1996;  271 (4 Pt 2) R848-R856
  • 49 van Dijk G. et al . Central infusions of leptin and GLP-1-(7-36) amide differentially stimulate c-FLI in the rat brain.  Am J Physiol. 1996;  271 (4 Pt 2) R1096-R1100
  • 50 van Dijk G. et al . Glucagon-like peptide-1 and satiety.  Nature. 1997;  385 (6613) 214
  • 51 Thiele T E. et al . Central infusion of GLP-1, but not leptin, produces conditioned taste aversions in rats.  Am J Physiol. 1997;  272 (2 Pt 2) R726-R730
  • 52 Larsen P J. et al . Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem.  Neuroscience. 1997;  77 (1) 257-270
  • 53 Larsen P J, Tang-Christensen M, Jessop D S. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat.  Endocrinology. 1997;  138 (10) 4445-4455
  • 54 Donahey J C. et al . Intraventricular GLP-1 reduces short- but not long-term food intake or body weight in lean and obese rats.  Brain Res. 1998;  779 (1 - 2) 75-83
  • 55 Tang-Christensen M, Vrang N, Larsen P J. Glucagon-like peptide 1(7-36) amide’s central inhibition of feeding and peripheral inhibition of drinking are abolished by neonatal monosodium glutamate treatment.  Diabetes. 1998;  47 (4) 530-537
  • 56 de Herder W W. et al . Food-dependent Cushing’s syndrome resulting from abundant expression of gastric inhibitory polypeptide receptors in adrenal adenoma cells.  J Clin Endocrinol Metab. 1996;  81 (9) 3168-3172
  • 57 Croughs R J. et al . GIP-dependent adrenal Cushing’s syndrome with incomplete suppression of ACTH.  Clin Endocrinol (Oxf). 2000;  52 (2) 235-240
  • 58 Starich G H, Bar R S, Mazzaferri E L. GIP increases insulin receptor affinity and cellular sensitivity in adipocytes.  Am J Physiol. 1985;  249 (6 Pt 1) E603-E607
  • 59 Beck B, Max J P. Gastric inhibitory polypeptide enhancement of the insulin effect on fatty acid incorporation into adipose tissue in the rat.  Regul Pept. 1983;  7 (1) 3-8
  • 60 Oben J. et al . Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7-36) amide, on fatty acid synthesis in explants of rat adipose tissue.  J Endocrinol. 1991;  130 (2) 267-272
  • 61 Dupre J. et al . Inhibition of actions of glucagon in adipocytes by gastric inhibitory polypeptide.  Metabolism. 1976;  25 (11) 1197-1199
  • 62 Yip R G. et al . Functional GIP receptors are present on adipocytes.  Endocrinology. 1998;  139 (9) 4004-4007
  • 63 Lugari R. et al . Evidence for early impairment of glucagon-like peptide 1-induced insulin secretion in human type 2 (non insulin-dependent) diabetes.  Horm Metab Res. 2002;  34 (3) 150-154
  • 64 Vilsboll T. et al . Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients.  Diabetes. 2001;  50 (3) 609-613
  • 65 Basu A, Rizza RA. Glucose effectiveness: measurement in diabetic and nondiabetic humans.  Exp Clin Endocrinol Diabetes. 2001;  109 (2) S157-S165
  • 66 Vella A. et al . Glucose-induced suppression of endogenous glucose production: dynamic response to differing glucose profiles.  Am J Physiol Endocrinol Metab. 2003;  285 (1) E25-E30
  • 67 Gutniak M. et al . Antidiabetogenic effect of glucagon-like peptide-1 (7 - 36)amide in normal subjects and patients with diabetes mellitus.  N Engl J Med. 1992;  326 (20) 1316-1322
  • 68 D’Alessio D A. et al . Glucagon-like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal.  J Clin Invest. 1994;  93 (5) 2263-2266
  • 69 Vahl T P. et al . Effects of GLP-1-(7-36)NH2, GLP-1-(7-37), and GLP-1- (9-36)NH2 on intravenous glucose tolerance and glucose-induced insulin secretion in healthy humans.  J Clin Endocrinol Metab. 2003;  88 (4) 1772-1779
  • 70 Vicini P, Caumo A, Cobelli C. Glucose effectiveness and insulin sensitivity from the minimal models: consequences of undermodeling assessed by Monte Carlo simulation.  IEEE Trans Biomed Eng. 1999;  46 (2) 130-137
  • 71 Cobelli C. et al . Overestimation of minimal model glucose effectiveness in presence of insulin response is due to undermodeling.  Am J Physiol. 1998;  275 (6 Pt 1) E1031-E1036
  • 72 Caumo A. et al . Undermodeling affects minimal model indexes: insights from a two-compartment model.  Am J Physiol. 1999;  276 (6 Pt 1) E1171-E1193
  • 73 Cobelli C, Caumo A, Omenetto M. Minimal model SG overestimation and SI underestimation: improved accuracy by a Bayesian two-compartment model.  Am J Physiol. 1999;  277 (3 Pt 1) E481-E488
  • 74 Van Dijk G. et al . Effects of glucagon-like peptide-I on glucose turnover in rats.  Am J Physiol. 1996;  270 (6 Pt 1) E1015-E1021
  • 75 Vella A. et al . Effect of glucagon-like peptide 1(7-36) amide on glucose effectiveness and insulin action in people with type 2 diabetes.  Diabetes. 2000;  49 (4) 611-617
  • 76 Meneilly G S. et al . Glucagon-like peptide-1 (7-37) augments insulin-mediated glucose uptake in elderly patients with diabetes.  J Gerontol A Biol Sci Med Sci. 2001;  56 (11) M681-M685
  • 77 Prigeon R L. et al . Suppression of glucose production by GLP-1 independent of islet hormones: a novel extrapancreatic effect.  Am J Physiol Endocrinol Metab. 2003;  285 (4) E701-E707
  • 78 Nishizawa M. et al . Effect of intraportal glucagon-like peptide-1 on glucose metabolism in conscious dogs.  Am J Physiol Endocrinol Metab. 2003;  284 (5) E1027-E1036
  • 79 Sandhu H. et al . Glucagon-like peptide 1 increases insulin sensitivity in depancreatized dogs.  Diabetes. 1999;  48 (5) 1045-1053
  • 80 Vella A. et al . Effect of glucagon-like peptide-1(7-36)-amide on initial splanchnic glucose uptake and insulin action in humans with type 1 diabetes.  Diabetes. 2001;  50 (3) 565-572
  • 81 Rolin B. et al . The major glucagon-like peptide-1 metabolite, GLP-1-(9-36)-amide, does not affect glucose or insulin levels in mice.  Eur J Pharmacol. 2004;  494 (2 - 3) 283-288
  • 82 Vella A. et al . Lack of effect of exendin-4 and glucagon-like peptide-1-(7,36)-amide on insulin action in non-diabetic humans.  Diabetologia. 2002;  45 (10) 1410-1415
  • 83 Ryan A S. et al . Insulinotropic hormone glucagon-like peptide-1-(7-37) appears not to augment insulin-mediated glucose uptake in young men during euglycemia.  J Clin Endocrinol Metab. 1998;  83 (7) 2399-2404
  • 84 Orskov L. et al . GLP-1 does not not acutely affect insulin sensitivity in healthy man.  Diabetologia. 1996;  39 (10) 1227-1232
  • 85 Freyse E J. et al . Glucagon-like peptide-1 has no insulin-like effects in insulin-dependent diabetic dogs maintained normoglycemic and normoinsulinemic.  Metabolism. 1999;  48 (1) 134-137
  • 86 Meneilly G S. et al . Effect of glucagon-like peptide 1 (7-36 amide) on insulin-mediated glucose uptake in patients with type 1 diabetes.  Diabetes Care. 2003;  26 (3) 837-842
  • 87 Ahren B, Larsson H, Holst J J. Effects of glucagon-like peptide-1 on islet function and insulin sensitivity in noninsulin-dependent diabetes mellitus.  J Clin Endocrinol Metab. 1997;  82 (2) 473-478
  • 88 Todd J F. et al . Glucagon-like peptide-1 (GLP-1): a trial of treatment in non-insulin-dependent diabetes mellitus.  Eur J Clin Invest. 1997;  27 (6) 533-536
  • 89 Meier J J. et al . Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes.  J Clin Endocrinol Metab. 2003;  88 (6) 2719-2725
  • 90 Delgado-Aros S. et al . Effect of GLP-1 on gastric volume, emptying, maximum volume ingested, and postprandial symptoms in humans.  Am J Physiol Gastrointest Liver Physiol. 2002;  282 (3) G424-G431
  • 91 Greydanus M P. et al . Neurohormonal factors in functional dyspepsia: insights on pathophysiological mechanisms.  Gastroenterology. 1991;  100 (5 Pt 1) 1311-1318
  • 92 Delgado-Aros S. et al . Effects of glucagon-like peptide-1 and feeding on gastric volumes in diabetes mellitus with cardio-vagal dysfunction.  Neurogastroenterol Motil. 2003;  15 (4) 435-443

A. Vella, M.D., M.R.C.P. (UK)

Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Mayo Clinic & Foundation

200 First ST SW · Rochester MN 55905 · USA

Phone: +1 (507) 284-3754 ·

Fax: +1 (507) 284-;5745

Email: vella.adrian@mayo.edu