Abstract
Anti-plasmodial activity-guided fractionation of Phlomis brunneogaleata (Lamiaceae) led to the isolation of two new metabolites, the iridoid glycoside, brunneogaleatoside and a new pyrrolidinium derivative (2S ,4R )-2-carboxy-4-(E )-p -coumaroyloxy-1,1-dimethylpyrrolidinium inner salt [(2S ,4R )-1,1-dimethyl-4-(E )-p -coumaroyloxyproline inner salt]. Moreover, a known iridoid glycoside, ipolamiide, six known phenylethanoid glycosides, verbascoside, isoverbascoside, forsythoside B, echinacoside, glucopyranosyl-(1→Gi -6)-martynoside and integrifolioside B, two flavone glycosides, luteolin 7-O -β-D -glucopyranoside (10 ) and chrysoeriol 7-O -β-D -glucopyranoside (11 ), a lignan glycoside liriodendrin, an acetophenone glycoside 4-hydroxyacetophenone 4-O -(6′-O -β-D -apiofuranosyl)-β-D -glucopyranoside and three caffeic acid esters, chlorogenic acid, 3-O -caffeoylquinic acid methyl ester and 5-O -caffeoylshikimic acid were isolated. The structures of the pure compounds were elucidated by means of spectroscopic methods (UV, IR, MS, 1D and 2D NMR, [α]D ) and X-ray crystallography. Compounds 10 and 11 were determined to be the major anti-malarial principles of the crude extract (IC50 values of 2.4 and 5.9 μg/mL, respectively). They also exhibited significant leishmanicidal activity (IC50 = 1.1 and 4.1 μg/mL, respectively). The inhibitory potential of the pure metabolites against plasmodial enoyl-ACP reductase (FabI), which is the key regulator of type II fatty acid synthases (FAS-II) in P. falciparum , was also assessed. Compound 10 showed promising FabI inhibiting effect (IC50 = 10 μg/mL) and appears to be the first anti-malarial natural product targeting FabI of P. falciparum .
Abbreviations
ACP:Acyl Carrier Protein
CC:Column Chromatography
FabI:Enoyl-Acyl Carrier Protein Reductase
FAS-I:Type I Fatty Acid Synthase System
FAS-II:Type II Fatty Acid Synthase System
MPLC:Medium Pressure Liquid Chromatography
Key words
Phlomis brunneogaleata
- Lamiaceae - iridoid - pyrrolidinium derivative - betonicine - luteolin 7-O -β-D -glucopyranoside -
Plasmodium falciparum enoyl-acyl carrier protein reductase (FabI) - type II fatty acid synthase (FAS-II)
References
1
Waller R F, Keeling P J, Donald R G, Striepen B, Handman E, Lang-Unnasch N. et al .
Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum
.
Proc Natl Acad Sci USA.
1998;
95
12 352-7
2
Perozzo R, Fidock D A, Kuo M, Sidhu A S, Valiyaveettil J T, Bittman R. et al .
Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase.
J Biol Chem.
2002;
277
13 106-114
3
Surolia N, Surolia A.
Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum
.
Nature Med.
2001;
7
167-73
4
McLeod R, Muench S P, Rafferty J B, Kyle D E, Mui E J, Kirisits M J. et al .
Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan FabI.
Int J Parasitol.
2001;
31
109-13
5 Sheldrick G M. SHELXL97, Program for the refinement of crystal structures. University of Göttingen Germany; 1997
6
Patchett A A, Witkop B.
Studies on hydroxyproline.
J Am Chem Soc.
1957;
79
185-92
7
Blunden G, Gordon S M, Crabb T A, Roch O G, Rowan M G, Wood B.
NMR spectra of betaines from marine algae.
Magn Res Chem.
1986;
24
965-71
8
Sperandeo N R, Brun R.
Synthesis and biological evaluation of pyrazolylnaphthoquinones as new potential antiprotozoal and cytotoxic agents.
ChemBioChem.
2003;
4
69-72
9
Kamel M S, Mohamed K M, Hassanean H A, Ohtani K, Kasai R, Yamasaki K.
Iridoid and megastigmane glycosides from Phlomis aurea
.
Phytochemistry.
2000;
55
353-7
10
Chini C, Bilia A R, Keita A, Morelli I.
Protoalkaloids from Boscia angustifolia
.
Planta Medica.
1992;
58
476
11
Ersöz T, Harput Ü I, Çalıs I, Dönmez A A.
Iridoid, phenylethanoid and monoterpene glycosides from Phlomis siehana
.
Turk J Chem.
2002;
26
1-8
12
Abougazar H, Bedir E, Khan I A, Çalıs I.
Wiedemanniosides A - E: New phenylethanoid glycosides from the roots of Verbascum wiedemannianum
.
Planta Medica.
2003;
69
814-9
13
Otsuka H.
Phenylethanoids from Linaria japonica
.
Phytochemistry.
1993;
32
979-81
14
Saracoglu I, Varel M, Hada J, Hada N, Takeda T, Dönmez A A. et al .
Phenylethanoid glycosides from Phlomis integrifolia Hub.-Mor.
Z Naturforsch.
2003;
58c
820-5
15 Markham K R, Chari V M.
13 C NMR Spectroscopy of Flavonoids. In: The Flavonoids: Advances in Research . (Harborne JB; Mabry TJ eds.) London; Chapman and Hall 1982: pp 19-132
16
Chaudhuri R K, Sticher O.
New iridoid glycosides and a lignan diglucoside from Globularia alypum L.
Helv Chim Acta.
1981;
64
3-15
17
Lu Y, Foo L Y.
Flavonoid and phenolic glycosides from Salvia officinalis
.
Phytochemistry.
2000;
55
263-7
18
Cheminat A, Zawatzky R, Becker H, Brouillard R.
Caffeoyl conjugates from Echinacea species: Structures and Biological activity.
Phytochemistry.
1988;
27
2787-94
19
Peng L Y, Mei S X, Jiang B, Zhou H, Sun H D.
Constituents from Lonicera japonica
.
Fitoterapia.
2000;
71
713-5
20
Veit M, Weidner C, Strack D, Wray V, Witte L, Czygan F C.
The distribution of caffeic acid conjugates in the Equisetaceae and some ferns.
Phytochemistry.
1992;
31
3483-5
21
Waller R F, Ralph S A, Reed M B, Su V, Douglas J D, Minnikin D E. et al .
A type II pathway for fatty acid biosynthesis present drug targets in Plasmodium falciparum
.
Antimicrob Agents Chemother.
2003;
47
297-301
22
Blunden G, Yang M -H, Yuan Z -X, Smith B E, Patel A, Cegarra J A. et al .
Betaine distribution in the Labiatae.
Biochem Syst Ecol.
1996;
24
71-81
Dr. Deniz Tasdemir
Institute of Organic Chemistry
University of Zurich
Winterthurerstrasse 190
8057 Zürich
Switzerland.
Telefon: +41-1-635-4213
Fax: +41-1-635-6812
eMail: deniz@oci.unizh.ch