Aktuelle Neurologie 2004; 31(6): 295-301
DOI: 10.1055/s-2004-828289
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Die Rolle des MEG in der Epilepsiediagnostik

The Role of MEG in the Assessment of EpilepsyE.  Düzel1
  • 1Klinik für Neurologie II, Otto-von-Guericke-Universität Magdeburg
Ich danke H. Hinrichs für wertvolle Kommentare
Further Information

Publication History

Publication Date:
28 July 2004 (online)

Zusammenfassung

Die zerebrale Magnetenzephalographie (MEG) ermöglicht eine nichtinvasive, kontakt- und referenzfreie Aufzeichnung von kortikaler Hirnaktivität. Mit der Entwicklung moderner Ganzkopfgeräte mit über 100 Aufzeichnungssensoren und der Verbesserung von mathematischen Modellen der Datenanalyse, hat sich das MEG zu einer ausgereiften Methodik entwickelt. Sie wird heute nicht nur in der neurowissenschaftlichen Hirnforschung angewandt, sondern findet als komplementäre Ergänzung zur Elektroenzephalographie auch zunehmend Eingang in die klinische Epilepsiediagnostik. In der prächirurgischen Diagnostik von Patienten mit einer pharmakoresistenten Epilepsie lässt sich mit dem MEG die irritative Zone in manchen Fällen nichtinvasiv lokalisieren. Erste Daten deuten darauf hin, dass sich mit dem MEG in der prächirurgischen Diagnostik auch eine Lokalisation kognitiver Funktionen, wie z. B. Sprache und Gedächtnis, erreichen lässt. Es sind noch weitere Studien erforderlich, um die Bedeutung dieser Methode in der Epilepsiediagnostik zu untermauern. Dennoch lassen die bisherigen Daten hoffen, dass in Zukunft das MEG im Zusammenspiel mit anderen bildgebenden Verfahren eine umfassende nichtinvasive Diagnostik ermöglichen könnte.

Abstract

Magnetoencephalography is a non-invasive tool that allows to obtain contact- and reference-free records of cortical activity. With the development of new whole-head imaging systems that have more than 100 recording sensors and with improved mathematical approaches to data analysis, MEG has evolved into a mature technique. Today, MEG is not only used for neuroscientific research, but also enters into the field of clinical epileptology. In presurgical evaluation of patients with pharmaco-resistant epilepsy, MEG can complement EEG to localize the irritative zone in a non-invasive manner. Initial data suggest that MEG also assists in the preoperative localisation of cognitive functions, such as language and memory. More studies are necessary to further establish MEG in the presurgical evaluation. Nevertheless, data available so far are promising and suggest that together with other imaging modalities MEG will allow a comprehensive non-invasive preoperative evaluation in the near future.

Literatur

  • 1 Cohen D. Magnetoencephalography: evidence of magnetic fields produced by alpha rhythm currents.  Science. 1968;  161 784-786
  • 2 Cohen D, Cuffin B N, Yunokuchi K. et al . MEG versus EEG localization test using implanted sources in the human brain.  Ann Neurol. 1990;  28 811-817
  • 3 Cohen D, Cuffin B N. EEG versus MEG localization accuracy: theory and experiment.  Brain Topogr. 1991;  4 95-103
  • 4 Sutherling W W, Crandall P H, Cahan L D, Barth D S. The magnetic field of epileptic spikes agrees with intracranial localizations in complex partial epilepsy.  Neurology. 1988;  38 778-786
  • 5 Stefan H, Schneider S, Abraham-Fuchs K. et al . Magnetic source localization in focal epilepsy. Multichannel magnetoencephalography correlated with magnetic resonance brain imaging.  Brain. 1990;  113 1347-1359
  • 6 Baumgartner C. Controversies in clinical neurophysiology. MEG is superior to EEG in the localization of interictal epileptiform activity: Con.  Clin Neurophysiol. 2004;  115 1010-1020
  • 7 Lopes da Silva F. Neural mechanisms underlying brain waves: from neural membranes to networks.  Electroencephalogr Clin Neurophysiol. 1991;  79 81-93
  • 8 Hämäläinen M, Hari R, Ilmoniemi R J. et al . Magnetoencephalographytheory, instrumentation, and applications to noninvasive studies of the working human brain.  Reviews of Modern Physics. 1993;  65 413-497
  • 9 Barkley G L. Controversies in neurophysiology. MEG is superior to EEG in localization of interictal epileptiform activity: Pro.  Clin Neurophysiol. 2004;  115 1001-1009
  • 10 Hamalainen M S, Sarvas J. Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data.  IEEE Trans Biomed Eng. 1989;  36 165-171
  • 11 Liu A K, Dale A M, Belliveau J W. Monte Carlo simulation studies of EEG and MEG localization accuracy.  Hum Brain Mapp. 2002;  16 47-62
  • 12 Crouzeix A, Yvert B, Bertrand O, Pernier J. An evaluation of dipole reconstruction accuracy with spherical and realistic head models in MEG.  Clinical Neurophysiology. 1999;  110 2176-2188
  • 13 Baumgartner C, Pataraia E, Lindinger G, Deecke L. Neuromagnetic recordings in temporal lobe epilepsy.  J Clin Neurophysiol. 2000;  17 177-189
  • 14 Fuchs M, Wagner M, Wischmann H A. et al . Improving source reconstructions by combining bioelectric and biomagnetic data.  Electroencephalogr Clin Neurophysiol. 1998;  107 93-111
  • 15 Cooper R, Winter A L, Crow H J, Walter W G. Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man.  Electroencephalogr Clin Neurophysiol. 1965;  18 217-228
  • 16 Mikuni N, Nagamine T, Ikeda A. et al . Simultaneous recording of epileptiform discharges by MEG and subdural electrodes in temporal lobe epilepsy.  Neuroimage. 1997;  5 298-306
  • 17 Oishi M, Otsubo H, Kameyama S. et al . Epileptic spikes: magnetoencephalography versus simultaneous electrocorticography.  Epilepsia. 2002;  43 1390-1395
  • 18 Ebersole J S. New applications of EEG/MEG in epilepsy evaluation.  Epilepsy Res Suppl. 1996;  11 227-237
  • 19 Essen D C Van, Drury H A. Structural and functional analyses of human cerebral cortex using a surface-based atlas.  J Neurosci. 1997;  17 7079-7102
  • 20 Cascino G D, Trenerry M R, So E L. et al . Routine EEG and temporal lobe epilepsy: relation to long-term EEG monitoring, quantitative MRI, and operative outcome.  Epilepsia. 1996;  37 651-656
  • 21 Stefan H, Hummel C, Scheler G. et al . Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases.  Brain. 2003;  126 2396-2405
  • 22 Pataraia E, Simos P G, Castillo E M. et al . Does magnetoencephalography add to scalp video-EEG as a diagnostic tool in epilepsy surgery?.  Neurology. 2004;  62 943-948
  • 23 Knowlton R C, Laxer K D, Aminoff M J. et al . Magnetoencephalography in partial epilepsy: clinical yield and localization accuracy.  Ann Neurol. 1997;  42 622-631
  • 24 Baumgartner C. Clinical applications of magnetoencephalography.  J Clin Neurophysiol. 2000;  17 175-176
  • 25 Lin Y Y, Shih Y H, Hsieh J C. et al . Magnetoencephalographic yield of interictal spikes in temporal lobe epilepsy. Comparison with scalp EEG recordings.  Neuroimage. 2003;  19 1115-1126
  • 26 Ko D Y, Kufta C, Scaffidi D, Sato S. Source localization determined by magnetoencephalography and electroencephalography in temporal lobe epilepsy: comparison with electrocorticography: technical case report.  Neurosurgery. 1998;  42 414-421
  • 27 Yoshinaga H, Nakahori T, Ohtsuka Y. et al . Benefit of simultaneous recording of EEG and MEG in dipole localization.  Epilepsia. 2002;  43 924-928
  • 28 Zijlmans M, Huiskamp G M, Leijten F S. et al . Modality-specific spike identification in simultaneous magnetoencephalography/electroencephalography: a methodological approach.  J Clin Neurophysiol. 2002;  19 183-191
  • 29 Iwasaki M, Nakasato N, Shamoto H. et al . Surgical implications of neuromagnetic spike localization in temporal lobe epilepsy.  Epilepsia. 2002;  43 415-424
  • 30 Ent D Van't, Manshanden I, Ossenblok P. et al . Spike cluster analysis in neocortical localization related epilepsy yields clinically significant equivalent source localization results in magnetoencephalogram (MEG).  Clin Neurophysiol. 2003;  114 1948-1962
  • 31 Baumgartner C, Barth D S, Levesque M F, Sutherling W W. Detection of epileptiform discharges on magnetoencephalography in comparison to invasive measurements. In: Hoke MES, Okada YC, Romani GL (eds) Biomagnetism: Clinical Aspects. Amsterdam; Elsevier 1992: 67-71
  • 32 Mesulam M. Principles of Behavioral and Cognitive Neurology. Oxford; Oxford University Press 2000
  • 33 Fernandez G, Effern A, Grunwald T. et al . Real-time tracking of memory formation in the human rhinal cortex and hippocampus.  Science. 1999;  285 1582-1585
  • 34 Tesche C D, Krusin-Elbaum L, Knowles W D. Simultaneous measurement of magnetic and electric responses of in vitro hippocampal slices.  Brain Res. 1988;  462 190-193
  • 35 Merlet I, Garcia-Larrea L, Ryvlin P. et al . Topographical reliability of mesio-temporal sources of interictal spikes in temporal lobe epilepsy.  Electroencephalogr Clin Neurophysiol. 1998;  107 206-212
  • 36 Abraham-Fuchs K, Harer W, Schneider S, Stefan H. Pattern recognition in biomagnetic signals by spatio-temporal correlation and application to the localisation of propagating neuronal activity.  Med Biol Eng Comput. 1990;  28 398-406
  • 37 Genow A, Hummel C, Scheler G. et al . Epilepsy surgery, resection volume and MSI localization in lesional frontal lobe epilepsy.  Neuroimage. 2004;  21 444-449
  • 38 Kirchberger K, Hummel C, Stefan H. Postoperative multichannel magnetoencephalography in patients with recurrent seizures after epilepsy surgery.  Acta Neurol Scand. 1998;  98 1-7
  • 39 Shih J J, Weisend M P, Lewine J. et al . Areas of interictal spiking are associated with metabolic dysfunction in MRI-negative temporal lobe epilepsy.  Epilepsia. 2004;  45 223-229
  • 40 Maestu F, Ortiz T, Fernandez A. et al . Spanish language mapping using MEG: a validation study.  Neuroimage. 2002;  17 1579-1586
  • 41 Parra J, Meeren H K, Kalitzin S. et al . Magnetic source imaging in fixation-off sensitivity: relationship with alpha rhythm.  J Clin Neurophysiol. 2000;  17 212-223
  • 42 Simos P G, Papanicolaou A C, Breier J I. et al . Insights into brain function and neural plasticity using magnetic source imaging.  J Clin Neurophysiol. 2000;  17 143-162
  • 43 Pataraia E, Baumgartner C, Lindinger G, Deecke L. Magnetoencephalography in presurgical epilepsy evaluation.  Neurosurg Rev. 2002;  25 141-159
  • 44 Kober H, Moller M, Nimsky C. et al . New approach to localize speech relevant brain areas and hemispheric dominance using spatially filtered magnetoencephalography.  Hum Brain Mapp. 2001;  14 236-250
  • 45 Paetau R, Saraneva J, Salonen O. et al . Electromagnetic function of polymicrogyric cortex in congenital bilateral perisylvian syndrome.  J Neurol Neurosurg Psychiatry. 2004;  75 717-722
  • 46 Mishkin M, Vargha-Khadem F, Gadian D G. Amnesia and the organization of the hippocampal system.  Hippocampus. 1998;  8 212-216
  • 47 Squire L R. Declarative and nondeclarative memory: Multiple brain systems supporting learning and memory. Special Issue: Memory systems.  Journal of Cognitive Neuroscience. 1992;  4 232-243
  • 48 Helmstaedter C, Kurthen M, Lux S. et al . Temporal lobe epilepsy: longitudinal clinical, neuropsychological and psychosocial follow-up of surgically and conservatively managed patients.  Nervenarzt. 2000;  71 629-642
  • 49 Helmstaedter C, Hoppe C, Elger C E. Memory alterations during acute high-intensity vagus nerve stimulation.  Epilepsy Res. 2001;  47 37-42
  • 50 Helmstaedter C, Elger C E. Cognitive consequences of two-thirds anterior temporal lobectomy on verbal memory in 144 patients: a three-month follow-up study.  Epilepsia. 1996;  37 171-180
  • 51 Helmstaedter C, Grunwald T, Lehnertz K. et al . Differential involvement of left temporolateral and temporomesial structures in verbal declarative learning and memory: evidence from temporal lobe epilepsy.  Brain Cogn. 1997;  35 110-131
  • 52 Fernandez G, Effern A, Grunwald T. et al . Real-time tracking of memory formation in the human rhinal cortex and hippocampus.  Science. 1999;  285 1582-1585
  • 53 Grunwald T, Lehnertz K, Heinze H J. et al . Verbal novelty detection within the human hippocampus proper.  Proc Natl Acad Sci U S A. 1998;  95 3193-3197
  • 54 Grunwald T, Lehnertz K, Helmstaedter C. et al . Limbic ERPs predict verbal memory after left-sided hippocampectomy.  Neuroreport. 1998;  9 3375-3378
  • 55 Düzel E, Habib R, Rotte M. et al . Human hippocampal and parahippocampal activity during visual associative recognition memory for spatial and non-spatial stimulus configurations.  J Neurosci. 2003;  23 9439-9444
  • 56 Düzel E, Habib R, Guderian S, Heinze H J. Four types of novelty-familiarity responses in associative recognition memory of humans.  Eur J Neurosci. 2004;  19 1408-1416
  • 57 Düzel E, Vargha-Khadem F, Heinze H J, Mishkin M. Brain activity evidence for recognition without recollection after early hippocampal damage.  Proc Natl Acad Sci U S A. 2001;  98 8101-8106
  • 58 Düzel E, Habib R, Schott B. et al . A multivariate, spatiotemporal anaylsis of electromagnetic time-frequency data of recognition memory.  Neuroimage. 2003;  18 185-197
  • 59 Düzel E, Kaufmann J, Guderian S. et al . Measures of hippocampal volumes, diffusion and 1H MRS metabolic abnormalities in temporal lobe epilepsy provide partially complementary information.  Eur J Neurol. 2004;  11 195-205

PD Dr. med. Emrah Düzel

Klinik für Neurologie II · Otto-von-Guericke-Universität Magdeburg

Leipziger Straße 44

39120 Magdeburg

Email: emrah.duezel@medizin.uni-magdeburg.de