Aktuelle Neurologie 2004; 31(8): 396-403
DOI: 10.1055/s-2004-828373
Kognitive Neurologie
© Georg Thieme Verlag KG Stuttgart · New York

Ereigniskorrelierte Potenziale in der kognitiven Neurologie

Event-Related Potentials in Cognitive NeurologyM.  Ullsperger1 , D.  Y.  von Cramon2
  • 1Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig
  • 2Tagesklinik für kognitive Neurologie, Universität Leipzig
Further Information

Publication History

Publication Date:
29 September 2004 (online)

Zusammenfassung

Im vorliegenden Artikel werden Ziele, Anwendbarkeit und Voraussetzungen des Einsatzes ereigniskorrelierter Hirnpotenziale (EKP) in der kognitiven Neurologie sowie in der klinischen Forschung diskutiert. Es wird beleuchtet, welche Erwartungen man an die Untersuchung mit EKPs stellen kann, und was bei der Interpretation der Daten zu beachten ist. Spezielles Augenmerk wird auf die kognitiven EKPs gerichtet, deren Einsatz sich im klinischen Kontext - von der klinischen Grundlagenforschung abgesehen - bisher noch nicht breit durchgesetzt hat. Für zwei mit kognitiven Prozessen korrelierende EKP-Komponenten werden Erfolg versprechende klinische Anwendungsbeispiele exemplarisch herausgestellt und die Möglichkeiten des breiteren Einsatzes diskutiert. Auch wenn die Erhebung kognitiver EKP-Komponenten in der Klinik mit mehr Aufwand verbunden ist als die Messung früher evozierter Potenziale, werden sie einen zunehmend breiteren Einsatz in der kognitiven Neurologie erfahren. Insbesondere in longitudinal angelegten Untersuchungen, aber auch bei spezifischen diagnostischen Fragestellungen können sie einen entscheidenden Beitrag liefern. Speziell sind Therapievalidierung, Verlaufsbeobachtung und vergleichende Studien verschiedener therapeutischer Ansätze hervorzuheben. Um diese Ziele erreichen zu können, sind Standardisierungen der Ableit- und Stimulationsbedingungen sowie spezifische, hypothesengeleitete Fragestellungen erforderlich.

Abstract

The present article discusses aims, feasibility, and prerequisites of investigations using event-related brain potentials (ERPs) in Cognitive Neurology and clinical research. It sheds light on the issues of what can be expected from ERP measures and what needs to be taken into account for data interpretation. Specific attention is directed on cognitive ERPs which are not widely used in the clinical context - except for clinical basic research. Promising examples for using two ERP components associated with cognitive processes are discussed with respect to clinical utility. Even though collecting cognitive ERP data is more demanding than measuring early evoked potentials, they will certainly be used more in Cognitive Neurology in the future. Cognitive ERPs are well suited particularly for longitudinal studies, but also for specific diagnostic questions. Specifically, they provide tools to validate therapeutic effects, to objectively measure the clinical course, and to perform comparative studies of different therapeutic approaches. To meet these aims, a standardization of data collection and stimulus presentation as well as specific, hypothesis-driven questions are required.

Literatur

  • 1 Coles M GH, Rugg M D. Event-related potentials: an introduction. In: Rugg M, Coles MGH (eds) Electrophysiology of Mind. Oxford; Oxford University Press 1995: 1-26
  • 2 Ullsperger P, Gille H-G. Die P300 Komponente des ereignisbezogenen Hirnpotentials als Indikator bei der Untersuchung von Informationsverarbeitungsprozessen.  Psychiat Neurol med Psychol. 1985;  37 582-588
  • 3 Ullsperger P, Gille H-G, Metz A-M. The P300 as a metric in psychophysics of cognitive processes. In: Barber C, Blum Th (eds) Evoked Potentials III. Boston; Butterworth 1987: 355-360
  • 4 Falkenstein M, Hohnsbein J, Hoormann J, Blanke L. Effects of errors in choice reaction tasks on the ERP under focused and divided attention. Brunia CHM, Gaillard AW, Kok A In: Psychophysiological Brain Research. Tilburg; University Press 1990 1: 192-195
  • 5 Gehring W, Goss B, Coles M. et al . A neural system for error detection and compensation.  Psychol Sci. 1993;  4 385-390
  • 6 Kotz S A, Friederici A D. Electrophysiology of normal and pathological language processing.  J Neuroling. 2003;  16 43-58
  • 7 Friederici A D, Cramon D Y von, Kotz S A. Language related brain potentials in patients with cortical and subcortical left hemisphere lesions.  Brain. 1999;  122 1033-1047
  • 8 Friederici A D, Kotz S A, Werheid K. et al . Syntactic comprehension in Parkinson's disease: investigating early automatic and late integrational processes using event-related potentials.  Neuropsychology. 2003;  17 133-142
  • 9 Näätenen R, Brattico E, Tervaniemi M. Mismatch negativity: A probe to auditory perception and cognition in basic and clinical research. In: Zani A, Proverbio AM (eds) The Cognitive Electrophysiology of Mind and Brain. San Diego; Academic Press 2003: 343-354
  • 10 Rugg M D. Event-related potentials in clinical neuropsychology. In: Crawford JR, Parker DM, McKinlay WW (eds) A Handbook of Neuropsychological Assessment. Hove; Lawrence Erlbaum 1992: 393-411
  • 11 Rugg M D. Cognitive event-related potentials: intracranial and lesion studies. In: Johnson RJ, Baron J, Boller F, Grafman J (eds) Handbook of Neuropsychology. Amsterdam; Elsevier Sciences 1995: 165-185
  • 12 Verleger R. Event-related EEG potential research in neurological patients. In: Zani A, Proverbio AM (eds) The Cognitive Electrophysiology of Mind and Brain. San Diego; Academic Press 2003: 309-341
  • 13 Donchin E, Coles M. Is the P300 component a manifestation of context updating?.  Behavioral & Brain Sciences. 1988;  11 357-374
  • 14 Mecklinger A, Ullsperger P. P3 varies with stimulus categorization rather than probability.  Electroencephalogr Clin Neurophysiol. 1993;  86 395-407
  • 15 Ullsperger P, Mecklinger A. P300 as index of cognitive adaptation. In: Ogura C, Koga Y, Shimokochi M (eds) Recent Advances in Event-Related Brain Potential Research. Amsterdam; Elsevier 1995: 47-51
  • 16 Kutas M, McCarthy G, Donchin E. Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time.  Science. 1977;  197 792-795
  • 17 Coles M GH, Smid H GOM, Scheffers M K, Otten L J. Mental chronometry and the study of human information processing. In: Rugg M, Coles MGH (eds) Electrophysiology of Mind. Oxford; Oxford University Press 1995: 86-131
  • 18 Johnson R. On the neuronal generators of the P300 component of the event-related potential.  Psychophysiology. 1993;  30 90-97
  • 19 Johnson R. On the neuronal generators of the P300: evidence from temporal lobectomy patients.  Electroencephalogr Clin Neurophysiol. 1995;  44S 110-129
  • 20 Knight R T, Scabini D. Anatomic bases of event-related potentials and their relationship to novelty detection.  J Clin Neurophysiol. 1998;  15 3-13
  • 21 Knight R T, Scabini D, Woods D L, Clayworth C C. Contributions of the temporal-parietal junction to the human auditory P3.  Brain Res. 1989;  502 109-116
  • 22 Yamaguchi S, Knight R T. Effects of temporal-parietal lesions on the somatosensory P3 to lower limb stimulation.  Electroencephalogr Clin Neurophysiol. 1992;  84 139-148
  • 23 Verleger R, Heide C, Butt C, Kompf D. Reduction of P3b potentials in patients with temporo-parietal lesions.  Cogn Brain Res. 1994;  2 103-116
  • 24 Maurer K, Eckert J. Ereigniskorrelierte Potentiale. In: Maurer K, Eckert J Praxis der evozierten Potentiale. Stuttgart; Enke Verlag 1999: 131-139
  • 25 Ullsperger P, Otto E, Bräuer D. Untersuchungen zur Reproduzierbarkeit akustisch evozierter Hirnpotentiale des Menschen.  Acta biol med germ. 1974;  32 629-636
  • 26 Sklare D, Lynn G. Latency of the P3 event-related potential: normative aspects and within-subject variability.  Electroencephalogr Clin Neurophysiol. 1984;  59 420-424
  • 27 Fabiani M, Gratton G, Karis D, Donchin E. Definition, identification, and reliability of measurement of the P300 component of the event-related brain potential. In: Jennings R, Ackles P, Coles M (eds) Advances in Psychophysiology. London; Jessica Kingsley Publishers 1987: 1-78
  • 28 Künstler B, Böttcher C. Zu aufgaben- und altersabhängigen Veränderungen der P300-Komponente des evozierten Hirnpotentials bei visuellen Diskriminationsforderungen.  Psychiat Neurol med Psychol. 1988;  40 211-222
  • 29 Segalowitz S, Barnes K. The reliability of ERP components in the auditory oddball paradigm.  Psychophysiology. 1993;  30 451-459
  • 30 Maeda H, Morita K, Nakamura J. et al . Reliability of the task-related component (P3b) of P3 event-related potentials.  Psychiatry Clin Neurosci. 1995;  49 281-286
  • 31 Minow F, Suchodoletz W von, Uwer R. Gütekriterien von Parametern der kognitiven evozierten Welle P3.  Z Kinder Jugendpsychiatr Psychother. 1996;  24 265-271
  • 32 Sandman C, Patterson J. The auditory event-related potential is a stable and reliable measure in elderly subjects over a 3 year period.  Clin Neurophysiol. 2000;  111 1427-1437
  • 33 Thesen T, Murphy C. Reliability analysis of event-related brain potentials to olfactory stimuli.  Psychophysiology. 2002;  39 733-738
  • 34 Polich J, Kok A. Cognitive and biological determinants of P300: an integrative review.  Biol Psychol. 1995;  41 103-146
  • 35 Hegerl U. Ereigniskorrelierte Potentiale. In: Hegerl U (Hrsg) Neurophysiologische Untersuchungen in der Psychiatrie. Wien; Springer-Verlag 1998: 95-140
  • 36 Yingling C D, Hosobuchi Y, Harrington M. P300 as a predictor of recovery from coma.  Lancet. 1990;  336 873
  • 37 Signorino M, D'Acunto S, Angeleri F, Pietropaoli P. Eliciting P300 in comatose patients.  Lancet. 1995;  345 255-256
  • 38 Gott P, Rabinowicz A, Giorgio C De. P300 auditory event-related potentials in nontraumatic coma. Association with Glasgow Coma Score and awakening.  Arch Neurol. 1991;  48 1267-1270
  • 39 Giorgio C De, Rabinowicz A, Gott P. Predictive value of P300 event-related potentials compared with EEG and somatosensory evoked potentials in non-traumatic coma.  Acta Neurol Scand. 1993;  87 423-427
  • 40 Guerit J, Verougstraete D, Tourtchaninoff M de. et al . ERPs obtained with the auditory oddball paradigm in coma and altered states of consciousness: clinical relationships, prognostic value, and origin of components.  Clin Neurophysiol. 1999;  110 1260-1269
  • 41 Kane N M, Curry S H, Butler S R, Cummins B H. Electrophysiological indicator of awakening from coma.  Lancet. 1993;  341 688
  • 42 Kane N M, Curry S H, Rowlands C A. et al . Event-related potentials - neurophysiological tools for predicting emergence and early outcome from traumatic coma.  Intensive Care Med. 1996;  22 39-46
  • 43 Kane N, Butler S, Simpson T. Coma outcome prediction using event-related potentials: P(3) and mismatch negativity.  Audiol Neurootol. 2000;  5 186-191
  • 44 Lew H L, Dikmen S, Slimp J. et al . Use of somatosensory-evoked potentials and cognitive event-related potentials in predicting outcomes of patients with severe traumatic brain injury.  Am J Phys Med Rehabil. 2003;  82 53-61; quiz 62 - 54, 80
  • 45 Keren O, Ben-Dror S, Stern M. et al . Event-related potentials as an index of cognitive function during recovery from severe closed head injury.  J Head Trauma Rehabil. 1998;  13 15-30
  • 46 Mecklinger A, Cramon D Y von, Matthes-von Cramon G. Event-related potential evidence for a specific recognition memory deficit in adult survivors of cerebral hypoxia.  Brain. 1998;  121 1919-1935
  • 47 Ullsperger M, Mecklinger A, Cramon G M von, Cramon D Y von. Transient global ischemia specifically modulates visual P300 scalp distribution.  Clin Neurophysiol. 2000;  111 2245-2254
  • 48 Auer H N, Beneviste H. Hypoxia and related conditions. In: Graham DI, Lantos PL (eds) 6th Greenfield's Neuropathology. London; Arnold 1997: 263-314
  • 49 Newton M, Barrett G, Callanan M, Towell A. Cognitive event-related potentials in multiple sclerosis.  Brain. 1989;  112 1637-1660
  • 50 Giesser B, Schroeder M, LaRocca N. et al . Endogenous event-related potentials as indices of dementia in multiple sclerosis patients.  Electroencephalogr Clin Neurophysiol. 1992;  82 320-329
  • 51 Gil R, Zai L, Neau J. et al . Event-related auditory evoked potentials and multiple sclerosis.  Electroencephalogr Clin Neurophysiol. 1993;  88 182-187
  • 52 Ellger T, Bethke F, Frese A. et al . Event-related potentials in different subtypes of multiple sclerosis - a cross-sectional study.  J Neurol Sci. 2002;  205 35-40
  • 53 Triantafyllou N, Voumvourakis K, Zalonis I. et al . Cognition in relapsing-remitting multiple sclerosis: a multichannel event-related potential (P300) study.  Acta Neurol Scand. 1992;  85 10-13
  • 54 Honig L, Ramsay R, Sheremata W. Event-related potential P300 in multiple sclerosis. Relation to magnetic resonance imaging and cognitive impairment.  Arch Neurol. 1992;  49 44-50
  • 55 Filipovic S R, Drulovic J, Stojsavljevic N, Levic Z. The effects of high-dose intravenous methylprednisolone on event-related potentials in patients with multiple sclerosis.  J Neurol Sci. 1997;  152 147-153
  • 56 Reeves R R, Struve F A, Patrick G. et al . The effects of donepezil on the P300 auditory and visual cognitive evoked potentials of patients with Alzheimer's disease.  Am J Geriatr Psychiatry. 1999;  7 349-352
  • 57 Thomas A, Iacono D, Bonanni L. et al . Donepezil, rivastigmine, and vitamin E in Alzheimer disease: a combined P300 event-related potentials/neuropsychologic evaluation over 6 months.  Clin Neuropharmacol. 2001;  24 31-42
  • 58 Katada E, Sato K, Sawaki A. et al . Long-term effects of donepezil on P300 auditory event-related potentials in patients with Alzheimer's disease.  J Geriatr Psychiatry Neurol. 2003;  16 39-43
  • 59 Werber E A, Gandelman-Marton R, Klein C, Rabey J M. The clinical use of P300 event related potentials for the evaluation of cholinesterase inhibitors treatment in demented patients.  J Neural Transm. 2003;  110 659-669
  • 60 Onofrj M, Thomas A, Iacono D. et al . The effects of a cholinesterase inhibitor are prominent in patients with fluctuating cognition: a part 3 study of the main mechanism of cholinesterase inhibitors in dementia.  Clin Neuropharmacol. 2003;  26 239-251
  • 61 Eriksen B A, Eriksen C W. Effects of noise letters upon the indetifikation of a target letter in a nonsearch task.  Perception & Psychophysics. 1974;  16 143-149
  • 62 Dehaene S, Posner M, Tucker D. Localization of a neural system for error detection and compensation.  Psychol Sci. 1994;  5 303-305
  • 63 Ullsperger M, Cramon D Y von. Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRI and ERPs.  Neuroimage. 2001;  14 1387-1401
  • 64 Picard N, Srrick P L. Motor areas of the medial wall: a review of their location and functional activation.  Cereb Cortex. 1996;  6 342-353
  • 65 Swick D, Turken A U. Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex.  Proc Natl Acad Sci. 2002;  99 16354-16359
  • 66 Swick D, Turken A U. Errors can be dissociated from conflict: Implications for theories of performance monitoring. In: Ullsperger M, Falkenstein M (eds) Errors, Conflicts, and the Brain. Current Opinions on Performance Monitoring. Leipzig; MPI for Human Cognitive and Brain Sciences 2004: 195-204
  • 67 Stemmer B, Segalowitz S J, Witzke W, Schönle P W. Error detection in patients with lesions to the medial prefrontal cortex: an ERP study.  Neuropsychologia. 2003;  42 118-130
  • 68 Gehring W, Knight R. Prefrontal-cingulate interactions in action monitoring.  Nat Neurosci. 2000;  3 516-520
  • 69 Ullsperger M, Cramon D Y von, Müller N G. Interactions of focal cortical lesions with error processing: evidence from event-related potentials.  Neuropsychology. 2002;  16 548-561
  • 70 Brass M, Cramon D Y von. The role of the frontal cortex in task preparation.  Cereb Cortex. 2002;  12 908-914
  • 71 Ullsperger M, Cramon D Y von. Gestörte Fehlerdetektion bei Basalganglienläsionen. 76. Kongress der Deutschen Gesellschaft für Neurologie, September, 2003.  Akt Neurol. 2003;  30 (Suppl 1) 102
  • 72 Gehring W, Himle J, Nisenson L. Action-monitoring dysfunction in obsessive-compulsive disorder.  Psychol Sci. 2000;  11 1-6
  • 73 Johannes S, Wieringa B, Nager W. et al . Discrepant target detection and action monitoring in obsessive-compulsive disorder.  Psychiatry Res. 2001;  108 101-110
  • 74 Johannes S, Wieringa B, Nager W. et al . Oxazepam alters action monitoring.  Psychopharmacology. 2001;  155 100-106
  • 75 Bruijn E RA De, Hulstijn W, Verkes R J. et al .Drug-induced stimulation and suppression of action monitoring in healthy volunteers. Psychopharmacology 2004, in press

1 Da dieselbe Potenzialverteilung auf der Kopfoberfläche von unterschiedlichen Kombinationen generierender Strukturen durch Aufsummierung und Volumenleitung erzeugt werden kann, lässt sich aus einer gemessenen Skalptopographie nicht eindeutig bestimmen, welche Hirnstrukturen an der Bildung des untersuchten EKP beteiligt sind.

2 Hierbei handelt es sich streng genommen um die P3a-Komponente, die mit der Orientierungsreaktion assoziiert ist, da die Patienten ihre Aufmerksamkeit nicht willentlich auf die Zielreize richten können und somit den Stimuli nur passiv ausgesetzt werden.

Dr. med. Markus Ullsperger

Max-Planck-Institut für Kognitions- und Neurowissenschaften

Stephanstraße 1 a

04103 Leipzig

Email: ullsperg@cbs.mpg.de