RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2004(11): 2046-2047
DOI: 10.1055/s-2004-831297
DOI: 10.1055/s-2004-831297
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York
Chiral Ketone Catalysts Derived from d-Fructose
Weitere Informationen
Publikationsverlauf
Publikationsdatum:
06. August 2004 (online)
Biographical Sketches
Introduction
In 1996, a new chiral ketone 1 (1,2;4,5-di-isopropylidene-d-erythro-2,3-hexodiuro-2,6-pyranose), derived from inexpensive d-fructose, was reported by Shi and co-workers as a highly active asymmetric epoxidation catalyst. [1] This rapidly developed into a new class of highly efficient catalysts for the asymmetric epoxidation of a wide range of olefins. [2]
Preparation
Ketones 1, 2 and 3 were prepared from d-fructose in excellent yields. [3a] [4] [5] Ketone 4 was prepared from d-glucose. [3c] [6]
Abstract
(A) Ketone 1 is an efficient epoxidation catalyst for trans-disubstituted and trisubstituted olefins with potassium peroxomonosulfate (Oxone) as the oxidant. [1] [3a] [7] Cheap dilute 30% H2O2, a green oxidant, shows an enantioselectivity comparable to that of Oxone. [8] [9] | |
(B) Hydroxyalkenes can be asymmetrically epoxidized by chiral ketone 1 with Oxone or H2O2. As shown, asymmetric epoxidation of trans-b-hydroxylmethylstyrene can be achieved in 98% ee and 85% yield. [10] | |
(C) A highly effective and mild asymmetric monoepoxidation of conjugated dienes with chiral ketone 1 and Oxone presents an efficient approach to prepare enantiomerically enriched vinyl epoxides. The enantiomeric excess for the major monoepoxides ranges from 89% to 97%. [11] | |
(D) For the asymmetric epoxidation of conjugated enynes using chiral ketone 1 as the catalyst and Oxone or H2O2 as the oxidant, a high ee up to 95% is obtained. [12] Double bonds in conjugated enynes can also be selectively epoxidized by ketone 2 and Oxone. [4] | |
(E) Chiral oxy-substituted epoxides or hydroxy ketones can be synthesized through the enantioselective epoxidation of chiral silyl enol ethers or enol esters catalyzed by ketone 1 and Oxone. [13] | |
(F) Through the asymmetric epoxidation of 2,2-disubstituted vinylsilanes, chiral 2,2-disubstituted a,b-epoxysilanes can be synthesized. [14] Upon desilylation, the corresponding 1,1-disubstituted terminal epoxides are obtained without any loss in enantioselectivity. | |
(G) The kinetic resolution of racemic 1,3- and 1,6-disubstituted cyclohexene via chiral ketone 1 has been demonstrated. [15] | |
(H) Asymmetric epoxidation of several trans-disubstituted and trisubstituted a,b-unsaturated esters was achieved with high yields and ee values, using a system consisting of ketone 2 and oxone. [4] | |
(I) For the asymmetric epoxidation of terminal olefins, ketone 1 shows a similar reactivity to ketone 4, but a much lower enantioselectivity. [16] | |
(J) Ketone 1 shows both a lower reactivity and a lower enantioselectivity than ketone 4 for the asymmetric epoxidation of cis-disubstituted olefins. [3] | |
(K) The enantioselectivity obtained with ketone 3 is very similar to that of ketone 1 in the asymmetric epoxidation of trans-disubstituted and trisubstituted olefins, hydroxyalkenes and chiral enol esters. However, the catalyst consumption is greatly decreased from 20-30 mol% for ketone 1 to 1-5 mol% for ketone 3. [5] |
- 1
Tu Y.Wang Z.-X.Shi Y. J. Am. Chem. Soc. 1996, 118: 9806 - For leading references on asymmetric epoxidation catalyzed by chiral ketones see:
-
2a
Curci R.Fiorentino M.Serio MR. Chem. Commun. 1984, 155 -
2b
Yang D.Yip YC.Tang MW.Wong MK.Zheng JH.Cheung KK. J. Am. Chem. Soc. 1996, 118: 491 -
2c
Song CE.Kim YH.Lee KC.Lee SG.Jin BW. Tetrahedron: Asymmetry 1997, 8: 2921 -
2d
Armstrong A.Hayter BR. Chem. Commun. 1998, 621 -
2e
Denmark SE.Wu Z. Synlett 1999, 847 -
2f
Frohn M.Shi Y. Synthesis 2000, 1979 -
2g
Wang Z.-X.Miller SM.Anderson OP.Shi Y. J. Org. Chem. 2001, 66: 521 -
2h
Matsumoto K.Tomioka K. Tetrahedron Lett. 2002, 43: 631 -
2i
Denmark SE.Matsuhashi H. J. Org. Chem. 2002, 67: 3479 -
2j
Shing TKM.Leung GYC. Tetrahedron 2002, 58: 7545 -
2k
Shu L.-H.Wang P.-Z.Gan Y.-H.Shi Y. Org. Lett. 2003, 5: 293 -
3a
Wang Z.-X.Tu Y.Frohn M.Zhang J.-R.Shi Y. J. Am. Chem. Soc. 1997, 119: 11224 -
3b
Tian H.-Q.She X.-G.Shu L.-H.Yu H.-W.Shi Y. J. Am. Chem. Soc. 2000, 122: 11551 -
3c
Tian H.-Q.She X.-G.Yu H.-W.Shu L.-H.Shi Y. J. Org. Chem. 2002, 67: 2435 - 4
Yu X.-Y.She X.-G.Shi Y. J. Am. Chem. Soc. 2002, 124: 8792 - 5
Tian H.-Q.She X.-G.Shi Y. Org. Lett. 2001, 3: 715 - 6
Shu L.-H.Shen Y.-M.Burke C.Goeddel D.Shi Y. J. Org. Chem. 2003, 68: 4963 - 7
Wang Z.-X.Tu Y.Frohn M.Shi Y. J. Org. Chem. 1997, 62: 2328 -
8a
Shu L.-H.Shi Y. Tetrahedron Lett. 1999, 40: 8721 -
8b
Shu L.-H.Shi Y. Tetrahedron 2001, 57: 5213 - 9 Yoxone or YH2O2 stands for the yield when Oxone or H2O2 is used as the oxidant; while Y1,Y3 or Y4 stands for the yield when ketone 1, 3 or 4 is used as the catalyst
- 10
Wang Z.-X.Shi Y. J. Org. Chem. 1998, 63: 3099 - 11
Frohn M.Dalkiewicz M.Tu Y.Wang Z.-X.Shi Y. J. Org. Chem. 1998, 63: 2948 -
12a
Cao G.-A.Wang Z.-X.Tu Y.Shi Y. Tetrahedron Lett. 1998, 39: 4425 -
12b
Wang Z.-X.Cao G.-A.Shi Y. J. Org. Chem. 1999, 64: 7646 -
13a
Zhu Y.-M.Tu Y.Yu H.-W.Shi Y. Tetrahedron Lett. 1998, 39: 7819 -
13b
Zhu Y.-M.Shu L.-H.Tu Y.Shi Y. J. Org. Chem. 2001, 66: 1818 - 14
Warren JD.Shi Y. J. Org. Chem. 1999, 64: 7675 - 15
Frohn M.Zhou X.-M.Zhang J.-R.Tang Y.Shi Y. J. Am. Chem. Soc. 1999, 121: 7718 - 16
Tian H.-Q.She X.-G.Xu J.-X.Shi Y. Org. Lett. 2001, 3: 1929
References
- 1
Tu Y.Wang Z.-X.Shi Y. J. Am. Chem. Soc. 1996, 118: 9806 - For leading references on asymmetric epoxidation catalyzed by chiral ketones see:
-
2a
Curci R.Fiorentino M.Serio MR. Chem. Commun. 1984, 155 -
2b
Yang D.Yip YC.Tang MW.Wong MK.Zheng JH.Cheung KK. J. Am. Chem. Soc. 1996, 118: 491 -
2c
Song CE.Kim YH.Lee KC.Lee SG.Jin BW. Tetrahedron: Asymmetry 1997, 8: 2921 -
2d
Armstrong A.Hayter BR. Chem. Commun. 1998, 621 -
2e
Denmark SE.Wu Z. Synlett 1999, 847 -
2f
Frohn M.Shi Y. Synthesis 2000, 1979 -
2g
Wang Z.-X.Miller SM.Anderson OP.Shi Y. J. Org. Chem. 2001, 66: 521 -
2h
Matsumoto K.Tomioka K. Tetrahedron Lett. 2002, 43: 631 -
2i
Denmark SE.Matsuhashi H. J. Org. Chem. 2002, 67: 3479 -
2j
Shing TKM.Leung GYC. Tetrahedron 2002, 58: 7545 -
2k
Shu L.-H.Wang P.-Z.Gan Y.-H.Shi Y. Org. Lett. 2003, 5: 293 -
3a
Wang Z.-X.Tu Y.Frohn M.Zhang J.-R.Shi Y. J. Am. Chem. Soc. 1997, 119: 11224 -
3b
Tian H.-Q.She X.-G.Shu L.-H.Yu H.-W.Shi Y. J. Am. Chem. Soc. 2000, 122: 11551 -
3c
Tian H.-Q.She X.-G.Yu H.-W.Shu L.-H.Shi Y. J. Org. Chem. 2002, 67: 2435 - 4
Yu X.-Y.She X.-G.Shi Y. J. Am. Chem. Soc. 2002, 124: 8792 - 5
Tian H.-Q.She X.-G.Shi Y. Org. Lett. 2001, 3: 715 - 6
Shu L.-H.Shen Y.-M.Burke C.Goeddel D.Shi Y. J. Org. Chem. 2003, 68: 4963 - 7
Wang Z.-X.Tu Y.Frohn M.Shi Y. J. Org. Chem. 1997, 62: 2328 -
8a
Shu L.-H.Shi Y. Tetrahedron Lett. 1999, 40: 8721 -
8b
Shu L.-H.Shi Y. Tetrahedron 2001, 57: 5213 - 9 Yoxone or YH2O2 stands for the yield when Oxone or H2O2 is used as the oxidant; while Y1,Y3 or Y4 stands for the yield when ketone 1, 3 or 4 is used as the catalyst
- 10
Wang Z.-X.Shi Y. J. Org. Chem. 1998, 63: 3099 - 11
Frohn M.Dalkiewicz M.Tu Y.Wang Z.-X.Shi Y. J. Org. Chem. 1998, 63: 2948 -
12a
Cao G.-A.Wang Z.-X.Tu Y.Shi Y. Tetrahedron Lett. 1998, 39: 4425 -
12b
Wang Z.-X.Cao G.-A.Shi Y. J. Org. Chem. 1999, 64: 7646 -
13a
Zhu Y.-M.Tu Y.Yu H.-W.Shi Y. Tetrahedron Lett. 1998, 39: 7819 -
13b
Zhu Y.-M.Shu L.-H.Tu Y.Shi Y. J. Org. Chem. 2001, 66: 1818 - 14
Warren JD.Shi Y. J. Org. Chem. 1999, 64: 7675 - 15
Frohn M.Zhou X.-M.Zhang J.-R.Tang Y.Shi Y. J. Am. Chem. Soc. 1999, 121: 7718 - 16
Tian H.-Q.She X.-G.Xu J.-X.Shi Y. Org. Lett. 2001, 3: 1929