Abstract
Asymmetric addition of alkoxyhydrosilanes to styrene derivatives was examined with
chiral bis(oxazolinyl)phenyl-rhodium complex to give moderate ratios (up to 77:23)
of α- and β-adducts and high enantioselectivity (up to 95% for the α-adduct).
Key words
rhodium - bisoxazoline - styrene - hydrosilylation - asymmetric catalysis
References
Rh-Phebox complexes:
<A NAME="RU19304ST-1A">1a </A>
Motoyama Y.
Makihara N.
Mikami Y.
Aoki K.
Nishiyama H.
Chem. Lett.
1997,
951
<A NAME="RU19304ST-1B">1b </A>
Motoyama Y.
Narusawa H.
Nishiyama H.
Chem. Commun.
1999,
131
<A NAME="RU19304ST-1C">1c </A>
Motoyama Y.
Koga Y.
Nishiyama H.
Tetrahedron
2001,
57:
853
<A NAME="RU19304ST-1D">1d </A>
Motoyama Y.
Okano M.
Narusawa H.
Makihara N.
Aoki K.
Nishiyama H.
Organometallics
2001,
20:
1580
<A NAME="RU19304ST-1E">1e </A>
Motoyama Y.
Shimozono K.
Aoki K.
Nishiyama H.
Organometallics
2002,
21:
1684
<A NAME="RU19304ST-1F">1f </A>
Motoyama Y.
Koga Y.
Kobayashi K.
Aoki K.
Nishiyama H.
Chem. Eur. J.
2002,
8:
2969
<A NAME="RU19304ST-1G">1g </A> Pd- and Pt-Phebox complexes:
Motoyama Y.
Mikami Y.
Kawakami H.
Aoki K.
Nishiyama H.
Organometallics
1999,
18:
3584
<A NAME="RU19304ST-1H">1h </A>
Motoyama Y.
Kawakami H.
Shimozono K.
Aoki K.
Nishiyama H.
Organometallics
2002,
21:
3408
Pd- and Pt-Phebox complexes:
<A NAME="RU19304ST-2A">2a </A>
Denmark SE.
Stavenger RA.
Faucher A.-M.
Edwards JP.
J. Org. Chem.
1997,
62:
3375
<A NAME="RU19304ST-2B">2b </A>
Stark MA.
Richards CJ.
Tetrahedron Lett.
1997,
38:
5881
<A NAME="RU19304ST-2C">2c </A>
Stark MA.
Jones G.
Richards CJ.
Organometallics
2000,
57:
853
<A NAME="RU19304ST-2D">2d </A>
Fossey JS.
Richard CJ.
Organometallics
2004,
23:
367
<A NAME="RU19304ST-3A">3a </A>
Bergens SH.
Noheda P.
Whelan J.
Bosnich B.
J. Am. Chem. Soc.
1992,
114:
2121
<A NAME="RU19304ST-3B">3b </A>
Bergens SH.
Noheda P.
Whelan J.
Bosnich B.
J. Am. Chem. Soc.
1992,
114:
2128
<A NAME="RU19304ST-3C">3c </A>
Wang X.
Bosnich B.
Organometallics
1994,
13:
4131
<A NAME="RU19304ST-3D">3d </A> Related stereoselective intramolecular hydrosilylation with Pt- and Rh-catalysts:
Tamao K.
Nakajima T.
Sumiya R.
Arai H.
Higuchi N.
Ito Y.
J. Am. Chem. Soc.
1986,
108:
6090
<A NAME="RU19304ST-3E">3e </A>
Tamao K.
Nakagawa Y.
Ito Y.
Organometallics
1993,
12:
2297
<A NAME="RU19304ST-3F">3f </A>
Curtis NR.
Holmes AB.
Tetrahedron Lett.
1992,
33:
675
<A NAME="RU19304ST-3G">3g </A>
Tamao K.
Nakamura K.
Ishii H.
Yamaguchi S.
Shiro M.
J. Am. Chem. Soc.
1996,
118:
12469
<A NAME="RU19304ST-4A">4a </A>
Uozumi Y.
Hayashi T.
J. Am. Chem. Soc.
1991,
113:
9887
<A NAME="RU19304ST-4B">4b </A>
Uozumi Y.
Kitayama K.
Hayashi T.
Yanagi K.
Fukuyo E.
Bull. Chem. Soc. Jpn.
1995,
68:
713
<A NAME="RU19304ST-4C">4c </A>
Hayashi T.
Hirate S.
Kitayama K.
Tsuji H.
Torii A.
Uozumi Y.
J. Org. Chem.
2001,
66:
1441
<A NAME="RU19304ST-4D">4d </A>
Han JW.
Tokunaga N.
Hayashi T.
J. Am. Chem. Soc.
2001,
123:
12915
<A NAME="RU19304ST-4E">4e </A> Reviews:
Hayashi T.
Uozumi Y.
Pure Appl. Chem.
1992,
64:
1911
<A NAME="RU19304ST-4F">4f </A> See also:
Hayashi T.
Catal. Today
2000,
62:
3
<A NAME="RU19304ST-4G">4g </A>
Other intermolecular AHSA:
<A NAME="RU19304ST-4H">4h </A>
Tillack A.
Koy C.
Michalik S.
Fischer C.
J. Organomet. Chem.
2000,
603:
116
<A NAME="RU19304ST-4I">4i </A>
Togni A.
Bieler N.
Bruckhardt U.
Koellner C.
Pioda G.
Schneider R.
Schnyder A.
Pure Appl. Chem.
1999,
71:
1531
<A NAME="RU19304ST-4J">4j </A>
Jensen JF.
Svendsen BY.
la Cour TV.
Pedersen HL.
Johannsen M.
J. Am. Chem. Soc.
2002,
124:
4588
<A NAME="RU19304ST-4K">4k </A>
Pedersen HL.
Johannsen M.
J. Org. Chem.
2002,
67:
7982
<A NAME="RU19304ST-5A">5a </A>
Tamao K.
Ishida N.
Tanaka T.
Kumada M.
Organometallics
1983,
2:
1694
<A NAME="RU19304ST-5B">5b </A>
Tamao K.
Ishida N.
J. Organomet. Chem.
1984,
269:
C37
<A NAME="RU19304ST-5C">5c </A>
Tamao K.
Nakajo E.
Ito Y.
J. Org. Chem.
1987,
52:
4412
<A NAME="RU19304ST-6">6 </A>
Typical Procedure for the Hydrosilylation of Styrene and Diethoxymethylsilane with
Rh(Phebox-
ip
)Cl
2
(
H
2
O) (Run 2, Table 1): To a solution of the rhodium complex 1 (4.9 mg, 0.01 mmol) and styrene (104 mg, 1.00 mmol) in toluene (1 mL) was added diethoxymethylsilane
(134 mg, 0.12 mmol) at r.t. The mixture was stirred at 50 °C for 72 h and was concentrated
to give an oily residue, which was purified by silica-gel column chromatography to
give a mixture of α- and β-silylated products (3a and 3b , 224 mg, 94%). The ratio of 54:46 was determined by 1 H NMR. The mixture (224 mg, 0.94 mmol) was treated with excess of KF, K2 CO3 , and H2 O2 (30%, 1 mL) in THF-MeOH (1:1, 2 mL) at 0 °C. The mixture was stirred for 12 h and
was treated with sat. aq solution of Na2 S2 O3 (6 mL) for 1 h. After usual work-up of extraction and concentration, the residue
was purified by column chromatography to give a mixture 1- and 2-phenylethanol (110
mg). The ee of 1-phenylethanol was determined by HPLC with DAICEL CHIRALCEL OB (i -PrOH-hexane = 1:9, 0.5 mL/min); 96:4, 11.4 min. for S and 14.6 min for R . For run 4 with AgBF4 , the procedure is as follows: a suspension of the rhodium complex 1 (0.01 mmol) and AgBF4 (0.02 mmol) in THF (1 mL) was stirred for 1 h. Then the solvent was removed under
reduced pressure to give the corresponding cationic complex as solids followed by
addition of solvent, alkene, and the silane.
<A NAME="RU19304ST-7">7 </A>
We did not observe formation of simple reduction products of alkenes or vinylsilanes
derived from ‘silylrhodation-β-hydride elimination’ in most cases.