Subscribe to RSS
DOI: 10.1055/s-2004-831364
© Georg Thieme Verlag Stuttgart · New York
Katecholamine im kardiogenen Schock: hilfreich, nutzlos oder gefährlich?
Catecholamine therapy in cardiogenic shock: good or bad?Publication History
eingereicht: 3.4.2003
akzeptiert: 3.6.2004
Publication Date:
15 September 2004 (online)
Zusammenfassung
Der kardiogene Schock ist charakterisiert durch eine inadäquate Perfusion des Körpers und der Organe. Er hat seine Ursache in einer Pumpdysfunktion des Herzens, meist aufgrund eines akuten Myokardinfarktes. Die Letalität ist mit 50-70 % trotz optimaler Therapie sehr hoch. Eine rasche Diagnostik, aggressive Therapieansätze (invasive oder operative Revaskularisation, mechanische Pumpunterstützung) und die medikamentöse Unterstützung des Herz-Kreislaufsystems des Patienten sind notwendig, um die Prognose zu verbessern. Medikamentös werden zur Behandlung des kardiogenen Schocks an erster Stelle Katecholamine eingesetzt. Sie wirken über Beta- und Alpha-Rezeptoren auf die Inotropie, die Herzfrequenz, den myokardialen Sauerstoffverbrauch und den Gefäßtonus. Die Anwendung von Katecholaminen hat jedoch nicht nur Vorteile. Sicher führen sie zu einer Steigerung des Herzzeitvolumens (HZV) und des systemischen Blutdruckes. Aber in der Folge kann es durch den gesteigerten Sauerstoffbedarf zur Azidose, durch die Vasokonstriktion zur Minderperfusion und schließlich zu einer gesteigerten inflammatorischen Reaktion des Organismus kommen, wodurch die kardiale bzw. die globale Organfunktion weiter kompromittiert werden kann. Fazit: Derzeit sind Katecholamine wichtig und notwendig zur Therapie des kardiogenen Schocks - aber die Therapie mit Katecholaminen sollte nur so lange und hochdosiert wie nötig erfolgen.
Summary
Cardiogenic shock is characterized by inadequate organ and tissue perfusion, due to cardiac dysfunction, predominately following acute myocardial infarction. Mortality rates for patients with cardiogenic shock remain high, ranging from 50-70 % despite effective therapy. Rapid diagnostics, aggressive therapeutic approach (invasive or surgical revascularisation) and pharmacological support are currently used to improve the clinical outcome and survival. In the first line commonly sympathomimetics like dopamine, dobutamine, epinephrine and norepinephrine are used for the pharmacological treatment. They have a high affinity for alpha- and beta adrenergic receptors, leading to a positive inotropic cardiac function, an increase in heart rate, oxygen enhanced demand, and an increase in vasoconstriction. However, there are also some disadvantages in the use of sympathomimetics in patients with cardiogenic shock. Clearly, metabolic acidosis due to the increased oxygen demand can be observed. Vasoconstriction induced by sympathomimetics can lead to perfusion mismatch or even deficit within the microcirculation. Additionally, in some studies which give evidence that the use of sympathomimetics can directly lead to enhanced systemic inflammatory response due to an increased IL-6 expression.
However, sympathomimetics are still firstline therapeutics for treatment of cardiogenic shock - with respect to dosage and duration of treatment.
Literatur
- 1 Barry W L, Sarembock I J. Cardiogenic Shock: Therapie and prevention. Clin Cardiol. 1998; 21 72-80
- 2 Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet. 2000; 356 2139-2143
- 3 Bohm M, Deutsch H J, Hartmann D, Rosee K L, Stablein A. Improvement of postreceptor events by metoprolol treatment in patients with chronic heart failure. J Am Coll Cardiol. 1997; 30 992-996
- 4 Braunwald E, Zipes D P, Libby P. Heart Deseases. 6th Edition Philadelphia, London, New York, St. Louis, Sydney, Toronto: WB Saunders Company 2001: 1178-1180
- 5 Braunwald E, Zipes D P, Libby P. Heart Deseases. 6th Edition Philadelphia, London, New York, St. Louis, Sydney, Toronto: WB Saunders Company 2001: 655
- 6 Bristow M R. Changes in myocardial and vascular receptors in heart failure (Review). J Am Coll Cardiol. 1993; 22 61A-71A (Suppl 4A)
- 7 Bristow M R. Mechanism of action of beta-blocking agents in heart failure (Review). Am J Cardiol. 1997; 80 26L-40L
- 8 Buerke M, Schwertz H, Seitz W, Meyer J, Darius H. Novel small molecule inhibitor of C1 s exerts cardioprotective effects in ischemia-reperfusion injury in rabbits. J Immunol. 2001; 167 5375-5380
- 9 Buerke M, Weyrich A S, Zheng Z, Gaeta F C, Forrest M J, Lefer A M. Sialyl Lewisx-containing oligosaccharide attenuates myocardial reperfusion injury in cats. J Clin Invest. 1994; 93 1140-1148
- 10 Burger A, Benicke M, Deten A, Zimmer H G. Catecholamines stimulate interleukin-6 synthesis in rat cardiac fibroblasts. Am J Physiol Heart Circ Physiol. 2001; 281 H14-21
- 11 Burns A M, Keogan M, Donaldson M, Brown D L, Park G R. Effects of inotropes on human leucocyte numbers, neutrophil function and lymphocyte subtypes. Br J Anaesth. 1997; 78 530-535
- 12 Califf R M, Bengtson J R. Cardiogenic shock (Review). N Engl J Med. 1994; 330 1724-1730
- 13 Cotter G, Kaluski E, Milo O, Blatt A, Salah A, Hendler A, Krakover R, Golick A, Vered Z. LINCS: L-NAME (a NO synthase inhibitor) in the treatment of refractory cardiogenic shock: a prospective randomized study. Eur Heart J. 2003; 24 1287-1295
- 14 Deng M C, Erren M, Lutgen A. et al . Interleukin-6 correlates with hemodynamic impairment during dobutamine administration in chronic heart failure. Int J Cardiol. 1996; 57 129-134
- 15 Dole W P, O’Rourke R A. Pathophysiology and management of cardiogenic shock (Review). Curr Probl Cardiol. 1983; 8 1-72
- 16 Fowler M B, Laser J A, Hopkins G L, Minobe W, Bristow M R. Assessment of the beta-adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation. 1986; 74 1290-1302
- 17 Fries K M, Felch M E, Phipps R P. Interleukin-6 is an autocrine growth factor for murine lung fibroblast subsets. Am J Respir Cell Mol Biol. 1994; 11 552-560
- 18 Gattinoni L, Brazzi L, Pelosi P. et al. SvO2 Collaborative Group . A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med. 1995; 333 1025-1032
- 19 Ginsburg R, Esserman L J, Bristow M R. Myocardial performance and extracellular ionized calcium in a severely failing human heart. Ann Intern Med. 1983; 98 603-606
- 20 Goldberg R J, Samad N A, Yarzebski J. et al . Temporal trends in cardiogenic shock complicating acute myocardial infarction. Engl J Med. 1999; 340 1162-1168
- 21 Gulick T, Chung M K, Pieper S J, Lange L G, Schreiner G F. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci U S A. 1989; 86 6753-6757
- 22 Hayes M A, Timmins A C, Yau E H, Palazzo M, Hinds C J, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. Engl J Med. 1994; 330 1717-1722
- 23 Hochman J S, Boland J, Sleeper L A. et al . Current spectrum of cardiogenic shock and effect of early revascularization on mortality. Results of an International Registry. SHOCK Registry Investigators. Circulation. 1995; 91 873-881
- 24 Hochman J S, Buller C E, Sleeper L A. et al . , Cardiogenic shock complicating acute myocardial infarction - etiologies, management and outcome: a report from the SHOCK Trial Registry. Should we emergently revascularize Occluded Coronaries for cardiogenic shocK?. J Am Coll Cardiol. 2000; 36 1063-1070 (Suppl 3A)
- 25 Hochman J S, Sleeper L A, Webb J G. et al . Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N Engl J Med. 1999; 341 625-634
- 26 Hollenberg S M, Parrillo J E. Shock. 14th Edition New York: McGraw-Hill In: Fauci AS, Braunwald E, Wilson JD, et al., Editors. Harrison’s Principles of Internal Medicine 1998: 214-222
- 27 Holmes D R, Bates E R. for the GUSTO investigators . Cardiogenic shock during myocardial infarction. The GUSTO experience with thrombolytic therapy. Circulation. 1993; 88 1-25
- 28 Holmes D R, Bates E R, Kleiman N S. et al., Contemporary reperfusion therapy for cardiogenic shock: the GUSTO-I trial experience. The GUSTO-I Investigators . Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries. J Am Coll Cardiol. 1995; 26 668-674
- 29 ISIS-3, Third international study of infarct survival collaborative group (1992) . A randomised comparison of Streptokinase vs tissue plasminogen activator vs anistraplase and of aspirin plus heparin vs aspirin alone among 41.299 cases of suspected acute myocardial infarction. Lancet. 1992; 339 753-770
- 30 Lotz M, Guerne P A. Interleukin-6 induces the synthesis of tissue inhibitor of metalloproteinases-1/erythroid potentiating activity (TIMP-1/EPA). J Biol Chem. 1991; 266 2017-2020
- 31 Metra M, Nodari S, D’Aloia A. et al . Beta-blocker therapy influences the hemodynamic response to inotropic agents in patients with heart failure: a randomized comparison of dobutamine and enoximone before and after chronic treatment with metoprolol or carvedilol. J Am Coll Cardiol. 2002; 40 1248-1258
- 32 Mohamed-Ali V, Flower L, Sethi J. et al . Beta-Adrenergic regulation of IL-6 release from adipose tissue: in vivo and in vitro studies. J Clin Endocrinol Metab. 2001; 86 5864-5869
- 33 Müller-Werdan U, Jacoby J, Loppnow H, Werdan K. Noradrenalin stimulates cardiomyocytes to produce interleukin-6, indicative of a proinflammatory action, which is supressed by carvedilol. Eur Heart J. 1999; 20 P1721 (Suppl)
- 34 Packer M, Carver J R, Rodeheffer R J. et al. The PROMISE Study Research Group . Effect of oral milrinone on mortality in severe chronic heart failure. N Engl J Med. 1991; 325 1468-1475
- 35 Pagani F D, Baker L S, Hsi C, Knox M, Fink M P, Visner M S. Left ventricular systolic and diastolic dysfunction after infusion of tumor necrosis factor-alpha in conscious dogs. J Clin Invest. 1992; 90 389-398
- 36 Pastemak R C, Braunwald E. Acute myocardial infarction. 12th Edition New York: McGraw-Hill In : Wilson JD, Braunwald E, Isselbacher KJ, editors. Harrison’s Principles of Internal Medicine 1991 Volume 1: 953-964
- 37 Ralph C J, Tanser S J, Macnaughton P D, Sinclair D G. A randomised controlled trial investigating the effects of dopexamine on gastrointestinal function and organ dysfunction in the critically ill. Intensive Care Med. 2002; 28 884-890
- 38 Takala J, Meier-Hellmann A, Eddleston J, Hulstaert P, Sramek V. Effect of dopexamine on outcome after major abdominal surgery: a prospective, randomized, controlled multicenter study. European Multicenter Study Group on Dopexamine in Major Abdominal Surgery. Crit Care Med. 2000; 28 3417-3423
- 39 TIMI IIIB Investigators . Effects of tissue plasminogen activator and a comparison of early invasive and conservative strategies in unstable angina and non-Q-wave infarction: results of the TIMI IIIB trial. Circulation. 1994; 89 1545-1556
- 40 Yokoyama T, Vaca L, Rossen R D, Durante W, Hazarika P, Mann D L. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest. 1993; 92 2303-2312
Priv.-Doz. Dr. med. M. Buerke
Medizinische Klinik und Poliklinik III, Klinikum der Medizinischen Fakultät, Martin Luther-Universität Halle-Wittenberg
Ernst-Grube-Straße 40
06120 Halle/Saale
Phone: 49/345/5572847
Fax: 49/345/5572801
Email: michael.buerke@medizin.uni-halle.de