Zusammenfassung
Mit dem Hauptaugenmerk auf klinische Anwendungen wird im Folgenden ein kurzer Statusbericht
über die Entwicklung von PET-Radiopharmaka zur nicht-invasiven Charakterisierung der
Tumorbiologie in vivo gegeben. Neben der Quantifizierung einer veränderten Glukoseutilisation
können heute eine Vielzahl molekularer Prozesse mit modernen PET-Radiopharmaka adressiert
und somit untersucht werden. So sind Proliferationsmarker, welche auf klonogene Zellen
in der S-Phase abzielen, wichtige Tracer zur Prädiktion des Therapieerfolgs und zum
Therapiemonitoring geworden. Während Tumorhypoxie zunächst nur im Bereich der Strahlentherapie
als klinisch relevant angesehen wurde, wird der Oxygenierungsstatus heute als integrale
Komponente malignen Wachstums verstanden und kann mittels radiomarkierter Proben lokalisiert
und quantifiziert werden. Radiopharmaka, die zur Adressierung der Tumorangiogenese
entwickelt werden, nutzen die veränderte Rezeptorexpression des lokalen Gefäßsystems
und des umliegenden Gewebes, während Tracer zur PET-Darstellung der Apoptose an Phosphatidylserin
binden, welches von apoptotischen Zellen auf der Außenseite der Zellmembran präsentiert
wird. Zur Tumordiagnostik sowie zur Quantifizierung der Überexpression von Peptidrezeptoren
im Vorfeld einer Peptidrezeptorradiotherapie hat sich das Peptidrezeptorimaging als
Methode etabliert. Alternativ zur Bildgebung von neuroendokrinen Tumoren mit sst-bindenden
Liganden wurden APUD-Tracer erfolgreich evaluiert. Radiomarkierte Aminosäuren finden
im PET-Imaging zerebraler Tumoren Anwendung und erlauben die Differenzierung von Tumoren
und entzündlichen Prozessen. Eine weitere Gruppe von Verbindungen, Choline und Azetate,
werden in Zellen mit erhöhter Lipidsynthese, insbesondere zur Synthese von Membrankomponenten,
aufgenommen. Diese und weitere Beispiele, wie die Entwicklung von Tracern zur Bildgebung
von Genaktivierung, zeigen, dass eine Vielzahl von neuen und innovativen Targeting-Strategien
zur Verfügung stehen und eine Untersuchung der in die Tumorbiologie involvierten biochemischen
und pathomolekularen Prozesse mit dem Ziel einer verbesserten Diagnose und Therapieplanung
erlauben.
Abstract
Focussed on clinical applications, a status report on the development of PET tracers
for the non-invasive characterization of the tumor biology is given. Apart from the
quantification of alterations in the glucose utilisation using [18F]FDG, a variety of molecular processes can be addressed and investigated by modern
PET tracers. Proliferation markers targeting the clonogenic cells in the S-phase have
become valuable tracers to predict for or allow rapid monitoring of response to therapy.
Once thought to be clinically relevant only in the field of radiation oncology, tumour
hypoxia is now regarded as an integral component of malignant progression and can
be visualized and quantitated by radiolabelled probes. Radiolabelled compounds addressing
tumour angiogenesis, which is an absolute requirement for solid tumours to grow beyond
some mm in diameter, exploit the substantial alteration in receptor expression by
the local vasculature and the surrounding tissue. For another important process, apoptosis,
tracers are developed for adressing the expression of phosphatidylserine at the outer
leaflet of the cell membrane. Peptide receptor imaging has become a valuable tool
in tumour diagnosis and in the quantification of peptide receptor expression prior
to peptide receptor radiotherapy. As an alternative to the imaging of neuroendocrine
tumours with sst-binding peptides, tracers targeting the APUD system have been sucessfully
evaluated and will broaden the value of PET for NETs. Radiolabelled amino acids are
used for brain tumor imaging and allow the differentiation between inflammatory and
tumour tissue. Another group of compounds, cholines and acetates, have been evaluated
as agents incorporated into tumor cells with upregulated lipid syntheses, i. e. for
the formation of membrane components. These examples, together with tracers for gene
therapy monitoring, demonstrate that a variety of new and emerging targeting strategies
allow a tracing of biochemical and pathomolecular processes which are involved in
tumor biology, with the aim to improve diagnosis and treatment planning.
Schlüsselwörter
PET - Radiopharmaka - Tumorbiologie - Onkologie - Bildgebung
Key words
PET - radiopharmaceuticals - tumour biology - oncology - imaging
Literatur
- 1
Stahl A, Wieder H, Piert M, Wester H J, Senekowitsch-Schmidtke R, Schwaiger M.
Positron emission tomography as a tool for translational research in oncology.
Mol Imaging Biol.
2004;
6
214-224
- 2
Kenny L M, Aboagye E O, Price P M.
Positron emission tomography imaging of cell proliferation in oncology (Review).
Clin Oncol R Coll Radiol.
2004;
16
176-185
- 3
Shields A F, Grierson J R, Dohmen B M, Machulla H J, Stayanoff J C, Lawhorn-Crews J M,
Obradovich J E, Muzik O, Mangner T J.
Imaging proliferation in vivo with [F-18]FLT and positron emission tomography.
Nat Med.
1998;
4
1334-1336
- 4
Wagner M, Seitz U, Buck A, Neumaier B, Schultheiss S, Bangerter M, Bommer M, Leithauser F,
Wawra E, Munzert G, Reske S N.
3′-[18F]fluoro-3′-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine
B-Cell lymphoma model and in the human disease.
Cancer Res.
2003;
63
2681-2687
- 5
Schwartz J L, Tamura Y, Jordan R, Grierson J R, Krohn K A.
Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine
and thymidine analogs.
J Nucl Med.
2003;
44
2027-2032
- 6
Buck A K, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, Mattfeldt T,
Neumaier B, Reske S N, Hetzel M.
Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG.
J Nucl Med.
2003;
44
1426-1431
- 7
Lu L, Samuelsson L, Bergstrom M, Sato K, Fasth K J, Langstrom B.
Rat studies comparing 11C-FMAU, 18F-FLT, and 76Br-BFU as proliferation markers.
J Nucl Med.
2002;
43
1688-1698
- 8
Mangner T J, Klecker R W, Anderson L, Shields A F.
Synthesis of 2′-deoxy-2′-[18F]fluoro-beta-D-arabinofuranosyl nucleosides, [18F]FAU, [18F]FMAU, [18F]FBAU and [18F]FIAU, as potential PET agents for imaging cellular proliferation. Synthesis of [18F]labelled FAU, FMAU, FBAU, FIAU.
Nucl Med Biol.
2003;
30
215-224
- 9
Chapman J D, Engelhardt E L, Stobbe C C, Schneider R F, Hanks G E.
Measuring hypoxia and predicting tumor radioresistance with nuclear medicine assays
(Review).
Radiother Oncol.
1998;
46
229-237
- 10
Sorger D, Patt M, Kumar P, Wiebe L I, Barthel H, Seese A, Dannenberg C, Tannapfel A,
Kluge R, Sabri O.
[18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]Fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging
in experimental rat tumors.
Nucl Med Biol.
2003;
30
317-326
- 11
Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A.
Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low
redox potential.
J Nucl Med.
1997;
38
1155-1160
- 12
Lewis J S, Welch M J.
PET imaging of hypoxia (Review).
Q J Nucl Med.
2001;
45
183-188
- 13
Haubner R, Wester H J.
Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic
therapies (Review).
Curr Pharm Des.
2004;
10
1439-1455
- 14
Haubner R, Wester H J, Weber W A, Mang C, Ziegler S I, Goodman S L, Senekowitsch-Schmidtke R,
Kessler H, Schwaiger M.
Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography.
Cancer Res.
2001;
61
1781-1785
- 15
Poethko T, Schottelius M, Thumshirn G, Hersel U, Herz M, Henriksen G, Kessler H, Schwaiger M,
Wester H J.
Two-step methodology for high-yield routine radiohalogenation of peptides: (18)F-labeled
RGD and octreotide analogs.
J Nucl Med.
2004;
45
892-902
- 16
Lahorte C M, Vanderheyden J L, Steinmetz N, Van de Wiele C, Dierckx R A, Slegers G.
Apoptosis-detecting radioligands: current state of the art and future perspectives.
Eur J Nucl Med Mol Imaging.
2004;
31
887-919
- 17
Zijlstra S, Gunawan J, Burchert W.
Synthesis and evaluation of a 18F-labelled recombinant annexin-V derivative, for identification and quantification
of apopototic cells with PET.
Appl Radiat Isot.
2003;
58
201-207
- 18
Boisgard R, Vuillemard C, Dolle F. et al .
New 18F and 99mTc radiopeptides for apoptosis imaging in tumor bearing mice (abstract).
Cancer Biother Radiopharm.
2003;
18
282
- 19
Okarvi S M.
Recent progress in fluorine-18 labelled peptide radiopharmaceuticals (Review).
Eur J Nucl Med.
2001;
28
929-938
- 20
Lundqvist H, Tolmachev V.
Targeting peptides and positron emission tomography (Review).
Biopolymers.
2002;
66
381-392
- 21 de Jong M, Kwekkeboom D, Valkema R, Krenning E P. Radiolabelled peptides for tumour
therapy: current status and future directions. Plenary lecture at the EANM 2002
- 22
Kowalski J, Henze M, Schuhmacher J, Macke H R, Hofmann M, Haberkorn U.
Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors.
Mol Imaging Biol.
2003;
5
42-48
- 23
Wester H J, Schottelius M, Scheidhauer K, Meisetschlager G, Herz M, Rau F C, Reubi J C,
Schwaiger M.
PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation
of a novel 18F-labelled, carbohydrated analogue of octreotide.
Eur J Nucl Med Mol Imaging.
2003;
30
117-122
- 24
Schottelius M, Poethko T, Herz M, Reubi J C, Kessler H, Schwaiger M, Wester H J.
First (18)F-labeled tracer suitable for routine clinical imaging of sst receptor-expressing
tumors using positron emission tomography.
Clin Cancer Res.
2004;
10
3593-3606
- 25
Wild D, Schmitt J S, Ginj M, Macke H R, Bernard B F, Krenning E, De Jong M, Wenger S,
Reubi J C.
DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for
labelling with various radiometals.
Eur J Nucl Med Mol Imaging.
2003;
30
1338-1347
- 26
Hoegerle S, Schneider B, Kraft A, Moser E, Nitzsche E U.
Imaging of a metastatic gastrointestinal carcinoid by F-18-DOPA positron emission
tomography.
Nuklearmedizin.
1999;
38
127-130
- 27
Eriksson B, Bergstrom M, Orlefors H, Sundin A, Oberg K, Langstrom B.
Use of PET in neuroendocrine tumors. In vivo applications and in vitro studies (Review).
Q J Nucl Med.
2000;
44
68-76
- 28
Sundin A, Eriksson B, Bergstrom M, Langstrom B, Oberg K, Orlefors H.
PET in the diagnosis of neuroendocrine tumors (Review).
Ann N Y Acad Sci.
2004;
1014
246-257
- 29
Orlefors H, Sundin A, Fasth K J, Oberg K, Langstrom B, Eriksson B, Bergstrom M.
Demonstration of high monoaminoxidase-A levels in neuroendocrine gastroenteropancreatic
tumors in vitro and in vivo - tumor visualization using positron emission tomography
with 11C-harmine.
Nucl Med Biol.
2003;
30
669-679
- 30
Jager P L, Vaalburg W, Pruim J, de Vries E G, Langen K J, Piers D A.
Radiolabeled amino acids: basic aspects and clinical applications in oncology (Review).
J Nucl Med.
2001;
42
432-445
- 31
Rau F C, Weber W A, Wester H J, Herz M, Becker I, Kruger A, Schwaiger M, Senekowitsch-Schmidtke R.
O-(2-[(18)F]Fluoroethyl)-L-tyrosine (FET): a tracer for differentiation of tumour from inflammation
in murine lymph nodes.
Eur J Nucl Med Mol Imaging.
2002;
29
1039-1046
- 32
Wester H J, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stocklin G.
Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging.
J Nucl Med.
1999;
40
205-212
- 33
Weber W A, Wester H J, Grosu A L, Herz M, Dzewas B, Feldmann H J, Molls M, Stocklin G,
Schwaiger M.
O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study.
Eur J Nucl Med.
2000;
27
542-549
- 34
Shinoura N, Nishijima M, Hara T, Haisa T, Yamamoto H, Fujii K, Mitsui I, Kosaka N,
Kondo T, Hara T.
Brain tumors: detection with C-11 choline PET.
Radiology.
1997;
202
497-503
- 35
DeGrado T R, Coleman R E, Wang S, Baldwin S W, Orr M D, Robertson C N, Polascik T J,
Price D T.
Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial
findings in prostate cancer.
Cancer Res.
2001;
61
110-117
- 36
Henriksen G, Herz M, Hauser A, Schwaiger M, Wester H J.
Synthesis and preclinical evaluation of the choline transport tracer deshydroxy-[(18)F]fluorocholine ([(18)F]dOC).
Nucl Med Biol.
2004;
31
851-858
- 37
Matthies A, Ezziddin S, Ulrich E M, Palmedo H, Biersack H J, Bender H, Guhlke S.
Imaging of prostate cancer metastases with 18F-fluoroacetate using PET/CT.
Eur J Nucl Med Mol Imaging.
2004;
31
797
- 38
Bengel F M.
Is the future of nuclear medicine written in the genes?.
Eur J Nucl Med Mol Imaging.
2004;
31
309-311
- 39
Min J J, Iyer M, Gambhir S S.
Comparison of [18F]FHBG and [14C]FIAU for imaging of HSV1-tk reporter gene expression: adenoviral infection vs stable
transfection.
Eur J Nucl Med Mol Imaging.
2003;
30
1547-1560
- 40
Tjuvajev J G, Doubrovin M, Akhurst T, Cai S, Balatoni J, Alauddin M M, Finn R, Bornmann W,
Thaler H, Conti P S, Blasberg R G.
Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging
of HSV1-tk gene expression.
J Nucl Med.
2002;
43
1072-1083
Dr. rer. nat. Hans-Jürgen Wester
Nuklearmedizinische Klinik und Poliklinik · Klinikum rechts der Isar
Ismaninger Straße 22
81675 München
Phone: 0 89/41 40 45 86
Fax: 0 89/41 40 48 41
Email: H.J.Wester@lrz.tum.de