Abstract
Alcohols are converted to their corresponding 2-tetrahydrofuranyl ethers using (diacetoxyiodo)benzene in THF. Reactions are carried out under reflux, or, more effectively, under microwave irradiation. Yields up to 81% are reported without the use of chlorinated solvents.
Key words
hypervalent iodine -
bis -THF-ether adduct - oxidations - protecting groups - microwave
References
1a
Wirth T.
Hirt UH.
Synthesis
1999,
1271
1b
Hirt UH.
Schuster MFH.
French AN.
Wiest OG.
Wirth T.
Eur. J. Org. Chem.
2001,
1569
1c
Wirth T.
Top. Curr. Chem.
2003,
224
1d
Boye AC.
Meyer D.
Ingison CK.
French AN.
Wirth T.
Org. Lett.
2003,
5:
2157
2a
Greene TW.
Wuts PGM.
Protective Groups in Organic Chemistry
Wiley;
New York:
1999.
Chap. 2.
p.57-58
2b
Sosnovsky G.
J. Org. Chem.
1960,
25:
874
2c
Sosnovsky G.
Tetrahedron
1961,
13:
241
2d
Eliel EL.
Nowak BE.
Daignault RA.
Badding VG.
J. Org. Chem.
1965,
30:
2441
2e
Kruse CG.
Broekhof NLJM.
van der Gen A.
Tetrahedron Lett.
1976,
20:
1725
2f
Kruse CG.
Poels EK.
Jonkers FL.
van der Gen A.
J. Org. Chem.
1978,
43:
3548
2g
Maione AM.
Romeo A.
Synthesis
1987,
250
2h
Jung JC.
Choi HC.
Kim YH.
Tetrahedron Lett.
1993,
34:
3581
2i
Yu B.
Hui Y.
Synth. Commun.
1995,
25:
2037
2j
Hon YS.
Lee CF.
Tetrahedron Lett.
1999,
40:
2389
2k
Baati R.
Valleix A.
Mioskowski C.
Barma DK.
Falck JR.
Org. Lett.
2000,
2:
485
2l
Barks JM.
Gilbert BC.
Parsons AF.
Upeandran B.
Tetrahedron Lett.
2000,
41:
6249
2m
Ochiai M.
Sueda T.
Tetrahedron Lett.
2004,
45:
3557
3
Wirth T.
Top. Curr. Chem.
2003,
224 ; and references cited therein
4a
Katritzky AR.
Zhang Y.
Singh SK.
Steel PJ.
ARKIVOC
2003,
15:
47
4b
Hayes BL.
Microwave Synthesis, Chemistry at the Speed of Light
CEM Publishing;
Matthews NC:
2002.
p.165-166
5a
Tamura Y.
Yakura T.
Haruta J.-i.
Kita Y.
J. Org. Chem.
1987,
52:
3927
5b
Kita Y.
Arisawa M.
Gyoten M.
Nakajima M.
Hamada R.
Tohma H.
Takada T.
J. Org. Chem.
1998,
63:
6625
5c
Hamamoto H.
Anilkumar G.
Tohma H.
Kita Y.
Chem.-Eur. J.
2002,
8:
5377
6 Professor Bernhard Witulski, personal communication.
7
Varvoglis A.
Chem. Soc. Rev.
1981,
10:
377
8
Nicolaou KC.
Mathison CJN.
Montagnon T.
J. Am. Chem. Soc.
2004,
126:
5192
9
Moriarty RM.
Vaid RK.
Duncan MP.
Ochiai M.
Inenaga Y.
Nagao Y.
Tetrahedron Lett.
1988,
29:
6913
10
Microwave Tetrahydrofuranylation
. PhI(OAc)2 (644 mg, 2.0 mmol), THF (2.50 mL) and decanol (0.38 mL, 2.0 mmol) were placed in a microwave tube, with a magnetic stirrer and sealed. The tube was placed in a CEM Discovery Microwave reactor and heated (at 100 W) to 100 °C over 5 min, then maintained at 100 °C for 1 h. Following a 30 min cool time, the tube was removed and the contents purified directly by flash chromatography, using 8:1 petroleum ether-Et2 O. The required fractions were concentrated under reduced pressure to afford a clear, colorless liquid (369 mg, 81%). 1 H NMR (400 MHz, CDCl3 ): δ = 0.79 (t, 3 H), 1.10-1.30 (m, 14 H), 1.47 (pent., 2 H), 1.65-1.97 (m, 4 H), 3.28, 3.57, 3.79, 5.03. 13 C NMR (100MHz, CDCl3 ): δ = 14.4, 23.0, 23.9, 26.56, 29.62, 29.68, 29.8, 29.9, 30.1, 32.3, 32.7, 67.0, 67.6, 104.0. MS (EI, 70 eV): m/z (%) = 227 (5) [M - H+ ], 211 (7), 141 (72), 71 (100), 57 (9), 43 (28), 41 (30).
Thermal Tetrahydrofuranylation. PhI(OAc)2 (322 mg, 1.0 mmol), THF (1.25 mL) and decanol (0.19 mL, 1.0 mmol) were placed in a microwave tube, with a magnetic stirrer and sealed. The tube was placed in an oil bath at 85 °C, for 24 h. The THF was removed under reduced pressure, and the product purified by flash chromatography, using 8:1 petroleum ether-Et2 O (145 mg, 61%).