The major platelet integrin αIIb β3 is the main receptor involved in platelet functions such as aggregation and spreading on extracellular matrix. Like all other integrins, αIIb β3 is capable of transducing signals both from inside and outside of the cell. To mediate these functions, αIIb β3 interacts with intracellular and transmembrane proteins. The identification of these proteins, as well as the study of their functions, has provided valuable insights into integrin-mediated function and signaling. This review summarizes the known proteins that directly interact with αIIb bβ3 and provides an overview of their roles in integrin function.
KEYWORDS
Integrin αIIb β3
- platelets - signaling
REFERENCES
1
Calderwood D A, Shattil S J, Ginsberg M H.
Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling.
J Biol Chem.
2000;
275
22607-22610
2
Liu S, Calderwood D A, Ginsberg M H.
Integrin cytoplasmic domain-binding proteins.
J Cell Sci.
2000;
113
3563-3571
3
Brakebusch C, Fassler R.
The integrin-actin connection, an eternal love affair.
EMBO J.
2003;
22
2324-2333
4
Hemler M E.
Integrin associated proteins.
Curr Opin Cell Biol.
1998;
10
578-585
5
Brown E J, Frazier W A.
Integrin-associated protein (CD47) and its ligands.
Trends Cell Biol.
2001;
11
130-135
6
Hemler M E.
Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain.
Annu Rev Cell Dev Biol.
2003;
19
397-422
7
Collier N C, Wang K.
Purification and properties of human platelet P235. A high molecular weight protein substrate of endogenous calcium-activated protease(s).
J Biol Chem.
1982;
257
6937-6943
8
Horwitz A, Duggan K, Buck C, Beckerle M C, Burridge K.
Interaction of plasma membrane fibronectin receptor with talin-a transmembrane linkage.
Nature.
1986;
320
531-533
9
Jockusch B M, Bubeck P, Giehl K et al..
The molecular architecture of focal adhesions.
Annu Rev Cell Dev Biol.
1995;
11
379-416
10
Borowsky M L, Hynes R O.
Layilin, a novel talin-binding transmembrane protein homologous with C-type lectins, is localized in membrane ruffles.
J Cell Biol.
1998;
143
429-442
11
Ling K, Doughman R L, Firestone A J, Bunce M W, Anderson R A.
Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions.
Nature.
2002;
420
89-93
12
Pfaff M, Liu S, Erle D J, Ginsberg M H.
Integrin beta cytoplasmic domains differentially bind to cytoskeletal proteins.
J Biol Chem.
1998;
273
6104-6109
13
Knezevic I, Leisner T M, Lam S C.
Direct binding of the platelet integrin alphaIIbbeta3 (GPIIb-IIIa) to talin. Evidence that interaction is mediated through the cytoplasmic domains of both alphaIIb and beta3.
J Biol Chem.
1996;
271
16416-16421
14
Sampath R, Gallagher P J, Pavalko F M.
Cytoskeletal interactions with the leukocyte integrin beta2 cytoplasmic tail. Activation-dependent regulation of associations with talin and alpha-actinin.
J Biol Chem.
1998;
273
33588-33594
15
Calderwood D A, Zent R, Grant R, Rees D J, Hynes R O, Ginsberg M H.
The talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation.
J Biol Chem.
1999;
274
28071-28074
16
Patil S, Jedsadayanmata A, Wencel-Drake J D, Wang W, Knezevic I, Lam S C.
Identification of a talin-binding site in the integrin beta(3) subunit distinct from the NPLY regulatory motif of post-ligand binding functions. The talin n-terminal head domain interacts with the membrane-proximal region of the beta(3) cytoplasmic tail.
J Biol Chem.
1999;
274
28575-28583
17
Rees D J, Ades S E, Singer S J, Hynes R O.
Sequence and domain structure of talin.
Nature.
1990;
347
685-689
18
Yan B, Calderwood D A, Yaspan B, Ginsberg M H.
Calpain cleavage promotes talin binding to the beta 3 integrin cytoplasmic domain.
J Biol Chem.
2001;
276
28164-28170
19
Xing B, Jedsadayanmata A, Lam S C.
Localization of an integrin binding site to the C terminus of talin.
J Biol Chem.
2001;
276
44373-44378
20
Calderwood D A, Yan B, de Pereda J M et al..
The phosphotyrosine binding-like domain of talin activates integrins.
J Biol Chem.
2002;
277
21749-21758
21
Law D A, Nannizzi-Alaimo L, Phillips D R.
Outside-in integrin signal transduction. Alpha IIb beta 3-(GP IIb IIIa) tyrosine phosphorylation induced by platelet aggregation.
J Biol Chem.
1996;
271
10811-10815
22
Garcia-Alvarez B, de Pereda J M, Calderwood D A et al..
Structural determinants of integrin recognition by talin.
Mol Cell.
2003;
11
49-58
23
Ulmer T S, Calderwood D A, Ginsberg M H, Campbell I D.
Domain-specific interactions of talin with the membrane-proximal region of the integrin beta3 subunit.
Biochemistry.
2003;
42
8307-8312
24
Tadokoro S, Shattil S J, Eto K et al..
Talin binding to integrin beta tails: a final common step in integrin activation.
Science.
2003;
302
103-106
25
Vinogradova O, Velyvis A, Velyviene A et al..
A structural mechanism of integrin αIIbβ3 “inside-out” activation as regulated by its cytoplasmic face.
Cell.
2002;
110
587-597
26
Kim M, Carman C V, Springer T A.
Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins.
Science.
2003;
301
1720-1725
27
Calderwood D A, Fujioka Y, de Pereda J M et al..
Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling.
Proc Natl Acad Sci USA.
2003;
100
2272-2277
28
Monkley S J, Zhou X H, Kinston S J et al..
Disruption of the talin gene arrests mouse development at the gastrulation stage.
Dev Dyn.
2000;
219
560-574
29
Monkley S J, Pritchard C A, Critchley D R.
Analysis of the mammalian talin2 gene TLN2.
Biochem Biophys Res Commun.
2001;
286
880-885
30
Bertagnolli M E, Locke S J, Hensler M E, Bray P F, Beckerle M C.
Talin distribution and phosphorylation in thrombin-activated platelets.
J Cell Sci.
1993;
106
1189-1199
31
Shattil S J, O’Toole T, Eigenthaler M et al..
Beta 3-endonexin, a novel polypeptide that interacts specifically with the cytoplasmic tail of the integrin beta 3 subunit.
J Cell Biol.
1995;
131
807-816
32
Li D, Desai-Yajnik V, Lo E, Schapira M, Abagyan R, Samuels H H.
NRIF3 is a novel coactivator mediating functional specificity of nuclear hormone receptors.
Mol Cell Biol.
1999;
19
7191-7202
33
Eigenthaler M, Hofferer L, Shattil S J, Ginsberg M H.
A conserved sequence motif in the integrin beta3 cytoplasmic domain is required for its specific interaction with beta3-endonexin.
J Biol Chem.
1997;
272
7693-7698
34
Kashiwagi H, Schwartz M A, Eigenthaler M, Davis K A, Ginsberg M H, Shattil S J.
Affinity modulation of platelet integrin alphaIIbbeta3 by beta3-endonexin, a selective binding partner of the beta3 integrin cytoplasmic tail.
J Cell Biol.
1997;
137
1433-1443
35
Gawaz M, Besta F, Ylanne J et al..
The NITY motif of the beta-chain cytoplasmic domain is involved in stimulated internalization of the beta3 integrin A isoform.
J Cell Sci.
2001;
114
1101-1113
36
Ohtoshi A, Otoshi H.
Analysis of beta3-endonexin mutants for their ability to interact with cyclin A.
Mol Genet Genomics.
2001;
266
664-671
37
Ohtoshi A, Maeda T, Higashi H, Ashizawa S, Yamada M, Hatakeyama M.
beta3-endonexin as a novel inhibitor of cyclin A-associated kinase.
Biochem Biophys Res Commun.
2000;
267
947-952
38
Besta F, Massberg S, Brand K et al..
Role of beta(3)-endonexin in the regulation of NF-kappaB-dependent expression of urokinase-type plasminogen activator receptor.
J Cell Sci.
2002;
115
3879-3888
39
Golden A, Nemeth S P, Brugge J S.
Blood platelets express high levels of the pp60c-src-specific tyrosine kinase activity.
Proc Natl Acad Sci USA.
1986;
83
852-856
40
Huang M M, Bolen J B, Barnwell J W, Shattil S J, Brugge J S.
Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets.
Proc Natl Acad Sci USA.
1991;
88
7844-7848
41
Stenberg P E, Pestina T I, Barrie R J, Jackson C W.
The Src family kinases, Fgr, Fyn, Lck, and Lyn, colocalize with coated membranes in platelets.
Blood.
1997;
89
2384-2393
42
Dorahy D J, Berndt M C, Burns G F.
Capture by chemical crosslinkers provides evidence that integrin alpha IIb beta 3 forms a complex with protein tyrosine kinases in intact platelets.
Biochem J.
1995;
309
481-490
43
Kralisz U, Cierniewski C S.
Association of pp60c-src with alpha IIb beta 3 in resting platelets.
Biochem Mol Biol Int.
1998;
45
735-743
44
Obergfell A, Eto K, Mocsai A et al..
Coordinate interactions of Csk, Src, and Syk kinases with [alpha]IIb[beta]3 initiate integrin signaling to the cytoskeleton.
J Cell Biol.
2002;
157
265-275
45
Horvath A R, Muszbek L, Kellie S.
Translocation of pp60c-src to the cytoskeleton during platelet aggregation.
EMBO J.
1992;
11
855-861
46
Clark E A, Brugge J S.
Redistribution of activated pp60c-src to integrin-dependent cytoskeletal complexes in thrombin-stimulated platelets.
Mol Cell Biol.
1993;
13
1863-1871
47
Klinghoffer R A, Sachsenmaier C, Cooper J A, Soriano P.
Src family kinases are required for integrin but not PDGFR signal transduction.
EMBO J.
1999;
18
2459-2471
48
Harrison S C.
Variation on a Src-like theme.
Cell.
2003;
112
737-740
49
Arias-Salgado E G, Lizano S, Sarkar S, Brugge J S, Ginsberg M H, Shattil S J.
Src kinase activation by direct interaction with the integrin {beta} cytoplasmic domain.
Proc Natl Acad Sci USA.
2003;
100
13298-13302
50
Yamaguchi H, Hendrickson W A.
Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation.
Nature.
1996;
384
484-489
51
Sicheri F, Moarefi I, Kuriyan J.
Crystal structure of the Src family tyrosine kinase Hck.
Nature.
1997;
385
602-609
52
Obergfell A, Buensuceso C, Shattil S J.
Alpha IIb beta 3 functions as a molecular anchor for proteins that mediate integrin signaling.
Blood.
2002;
101
122a
53
Buensuceso C, De Virgilio M, Shattil S J.
Detection of integrin αIIbβ3 clustering in living cells.
J Biol Chem.
2003;
278
15217-15224
54
Su J, Muranjan M, Sap J.
Receptor protein tyrosine phosphatase α activates Src-family kinases and controls integrin-mediated responses in fibroblasts.
Curr Biol.
1999;
9
505-511
55
Chan A C, Iwashima M, Turck C W, Weiss A.
ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain.
Cell.
1992;
71
649-662
56
Muller B, Cooper L, Terhorst C.
Molecular cloning of the human homologue to the pig protein-tyrosine kinase syk.
Immunogenetics.
1994;
39
359-362
57
Coopman P J, Do M T, Barth M et al..
The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells.
Nature.
2000;
406
742-747
58
Inatome R, Yanagi S, Takano T, Yamamura H.
A critical role for Syk in endothelial cell proliferation and migration.
Biochem Biophys Res Commun.
2001;
286
195-199
59
Tsujimura T, Yanagi S, Inatome R et al..
Syk protein-tyrosine kinase is involved in neuron-like differentiation of embryonal carcinoma P19 cells.
FEBS Lett.
2001;
489
129-133
60
Yamada T, Fujieda S, Yanagi S et al..
IL-1 induced chemokine production through the association of Syk with TNF receptor-associated factor-6 in nasal fibroblast lines.
J Immunol.
2001;
167
283-288
61
Woodside D G, Obergfell A, Leng L et al..
Activation of Syk protein tyrosine kinase through interaction with integrin beta cytoplasmic domains.
Curr Biol.
2001;
11
1799-1804
62
Hato T, Pampori N, Shattil S J.
Complementary roles for receptor clustering and conformational change in the adhesive and signaling functions of integrin alphaIIb beta3.
J Cell Biol.
1998;
141
1685-1695
63
Clark E A, Shattil S J, Ginsberg M H, Bolen J, Brugge J S.
Regulation of the protein tyrosine kinase pp72syk by platelet agonists and the integrin alpha IIb beta 3.
J Biol Chem.
1994;
269
28859-28864
64
Woodside D G, Obergfell A, Talapatra A, Calderwood D A, Shattil S J, Ginsberg M H.
The N-terminal SH2 domains of Syk and ZAP-70 mediate phosphotyrosine-independent binding to integrin beta cytoplasmic domains.
J Biol Chem.
2002;
277
39401-39408
65
Lin T H, Rosales C, Mondal K, Bolen J B, Haskill S, Juliano R L.
Integrin-mediated tyrosine phosphorylation and cytokine message induction in monocytic cells. A possible signaling role for the Syk tyrosine kinase.
J Biol Chem.
1995;
270
16189-16197
66
Yan S R, Huang M, Berton G.
Signaling by adhesion in human neutrophils: activation of the p72syk tyrosine kinase and formation of protein complexes containing p72syk and Src family kinases in neutrophils spreading over fibrinogen.
J Immunol.
1997;
158
1902-1910
67
Miller L A, Hong J J, Kinch M S, Harrison M L, Geahlen R L.
The engagement of beta1 integrins on promonocytic cells promotes phosphorylation of Syk and formation of a protein complex containing Lyn and beta1 integrin.
Eur J Immunol.
1999;
29
1426-1434
68
Mocsai A, Zhou M, Meng F, Tybulewicz V L, Lowell C A.
Syk is required for integrin signaling in neutrophils.
Immunity.
2002;
16
547-558
69
Vines C M, Potter J W, Xu Y et al..
Inhibition of beta 2 integrin receptor and Syk kinase signaling in monocytes by the Src family kinase Fgr.
Immunity.
2001;
15
507-519
70
Miranti C K, Leng L, Maschberger P, Brugge J S, Shattil S J.
Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1.
Curr Biol.
1998;
8
1289-1299
71
Obergfell A, Judd B A, del Pozo M A, Schwartz M A, Koretzky G A, Shattil S J.
The molecular adapter SLP-76 relays signals from platelet integrin alphaIIbbeta3 to the actin cytoskeleton.
J Biol Chem.
2001;
276
5916-5923
72
Judd B A, Myung P S, Leng L et al..
Hematopoietic reconstitution of SLP-76 corrects hemostasis and platelet signaling through alpha IIb beta 3 and collagen receptors.
Proc Natl Acad Sci USA.
2000;
97
12056-12061
73
Wonerow P, Obergfell A, Wilde J I et al..
Differential role of glycolipid-enriched membrane domains in glycoprotein VI- and integrin-mediated phospholipase Cgamma2 regulation in platelets.
Biochem J.
2002;
364
755-765
74
Clark E A, Brugge J S.
Integrins and signal transduction pathways: the road taken.
Science.
1995;
268
233-239
75
Clark E A, Shattil S J, Brugge J S.
Regulation of protein tyrosine kinases in platelets.
Trends Biochem Sci.
1994;
19
464-469
76
Keely P J, Parise L V.
The alpha2beta1 integrin is a necessary co-receptor for collagen-induced activation of Syk and the subsequent phosphorylation of phospholipase Cgamma2 in platelets.
J Biol Chem.
1996;
271
26668-26676
77
Sarkar S, Rooney M M, Lord S T.
Activation of integrin-beta3-associated syk in platelets.
Biochem J.
1999;
338
677-680
78
Law D A, Nannizzi-Alaimo L, Ministri K et al..
Genetic and pharmacological analyses of Syk function in alphaIIbbeta3 signaling in platelets.
Blood.
1999;
93
2645-2652
79
Ron D, Chen C H, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D.
Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins.
Proc Natl Acad Sci USA.
1994;
91
839-843
80
Mochly-Rosen D, Gordon A S.
Anchoring proteins for protein kinase C: a means for isozyme selectivity.
FASEB J.
1998;
12
35-42
81
Yarwood S J, Steele M R, Scotland G, Houslay M D, Bolger G B.
The RACK1 signaling scaffold protein selectively interacts with the cAMP-specific phosphodiesterase PDE4D5 isoform.
J Biol Chem.
1999;
274
14909-14917
82
Geijsen N, Spaargaren M, Raaijmakers J A, Lammers J W, Koenderman L, Coffer P J.
Association of RACK1 and PKCbeta with the common beta-chain of the IL-5/IL-3/GM-CSF receptor.
Oncogene.
1999;
18
5126-5130
83
Rodriguez M M, Ron D, Touhara K, Chen C H, Mochly-Rosen D.
RACK1, a protein kinase C anchoring protein, coordinates the binding of activated protein kinase C and select pleckstrin homology domains in vitro.
Biochemistry.
1999;
38
13787-13794
84
Buensuceso C S, Woodside D, Huff J L, Plopper G E, O'Toole T E.
The WD protein Rack1 mediates protein kinase C and integrin-dependent cell migration.
J Cell Sci.
2001;
114
1691-1698
85
Liliental J, Chang D D.
Rack1, a receptor for activated protein kinase C, interacts with integrin beta subunit.
J Biol Chem.
1998;
273
2379-2383
86
Besson A, Wilson T L, Yong V W.
The anchoring protein RACK1 links protein kinase Cepsilon to integrin beta chains. Requirements for adhesion and motility.
J Biol Chem.
2002;
277
22073-22084
87
Cox E A, Bennin D, Doan A T, O'Toole T, Huttenlocher A.
RACK1 regulates integrin-mediated adhesion, protrusion, and chemotactic cell migration via its Src-binding site.
Mol Biol Cell.
2003;
14
658-669
88
Hannigan G E, Leung-Hagesteijn C, Fitz-Gibbon L et al..
Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase.
Nature.
1996;
379
91-96
89
Dedhar S, Williams B, Hannigan G.
Integrin-linked kinase (ILK): a regulator of integrin and growth-factor signalling.
Trends Cell Biol.
1999;
9
319-323
90
Dedhar S.
Cell-substrate interactions and signaling through ILK.
Curr Opin Cell Biol.
2000;
12
250-256
91
Wu C Y, Dedhar S.
Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes.
J Cell Biol.
2001;
155
505-510
92
Pasquet J M, Noury M, Nurden A T.
Evidence that the platelet integrin alphaIIb beta3 is regulated by the integrin-linked kinase, ILK, in a PI3-kinase dependent pathway.
Thromb Haemost.
2002;
88
115-122
93
Yamaji S, Suzuki A, Kanamori H et al..
Possible role of ILK-affixin complex in integrin-cytoskeleton linkage during platelet aggregation.
Biochem Biophys Res Commun.
2002;
297
1324-1331
94
Yamaji S, Suzuki A, Sugiyama Y et al..
A novel integrin-linked kinase-binding protein, affixin, is involved in the early stage of cell-substrate interaction.
J Cell Biol.
2001;
153
1251-1264
95
Barry F A, Gibbins J M.
Protein kinase B is regulated in platelets by the collagen receptor glycoprotein VI.
J Biol Chem.
2002;
277
12874-12878
96
Price M G.
Skelemins: cytoskeletal proteins located at the periphery of M-discs in mammalian striated muscle.
J Cell Biol.
1987;
104
1325-1336
97
Reddy K B, Gascard P, Price M G, Negrescu E V, Fox J E.
Identification of an interaction between the m-band protein skelemin and beta-integrin subunits. Colocalization of a skelemin-like protein with beta1- and beta3-integrins in non-muscle cells.
J Biol Chem.
1998;
273
35039-35047
98
Reddy K B, Bialkowska K, Fox J E.
Dynamic modulation of cytoskeletal proteins linking integrins to signaling complexes in spreading cells. Role of skelemin in initial integrin-induced spreading.
J Biol Chem.
2001;
276
28300-28308
99
Djinovic-Carugo K, Gautel M, Ylanne J, Young P.
The spectrin repeat: a structural platform for cytoskeletal protein assemblies.
FEBS Lett.
2002;
513
119-123
100
Goldmann W H.
Kinetic determination of focal adhesion protein formation.
Biochem Biophys Res Commun.
2000;
271
553-557
101
Otey C A, Vasquez G B, Burridge K, Erickson B W.
Mapping of the alpha-actinin binding site within the beta 1 integrin cytoplasmic domain.
J Biol Chem.
1993;
268
21193-21197
102
Lyman S, Gilmore A, Burridge K, Gidwitz S, White II G C.
Integrin-mediated activation of focal adhesion kinase is independent of focal adhesion formation or integrin activation. Studies with activated and inhibitory beta3 cytoplasmic domain mutants.
J Biol Chem.
1997;
272
22538-22547
103
Izaguirre G, Aguirre L, Hu Y P et al..
The cytoskeletal/non-muscle isoform of alpha-actinin is phosphorylated on its actin-binding domain by the focal adhesion kinase.
J Biol Chem.
2001;
276
28676-28685
104
Stossel T P, Condeelis J, Cooley L et al..
Filamins as integrators of cell mechanics and signalling.
Nat Rev Mol Cell Biol.
2001;
2
138-145
105
Gorlin J B, Yamin R, Egan S et al..
Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring.
J Cell Biol.
1990;
111
1089-1105
106
Pavalko F M, Otey C A, Burridge K.
Identification of a filamin isoform enriched at the ends of stress fibers in chicken embryo fibroblasts.
J Cell Sci.
1989;
94
109-118
107
Loo D T, Kanner S B, Aruffo A.
Filamin binds to the cytoplasmic domain of the beta1-integrin. Identification of amino acids responsible for this interaction.
J Biol Chem.
1998;
273
23304-23312
108
Sharma C P, Ezzell R M, Arnaout M A.
Direct interaction of filamin (ABP-280) with the beta 2-integrin subunit CD18.
J Immunol.
1995;
154
3461-3470
109
Calderwood D A, Huttenlocher A, Kiosses W B et al..
Increased filamin binding to beta-integrin cytoplasmic domains inhibits cell migration.
Nat Cell Biol.
2001;
3
1060-1068
110
Williamson D, Pikovski I, Cranmer S L et al..
Interaction between platelet glycoprotein Ibα and filamin-1 is essential for glycoprotein Ib/IX receptor anchorage at high shear.
J Biol Chem.
2002;
277
2151-2159
111
Datta A, Huber F, Boettiger D.
Phosphorylation of beta3 integrin controls ligand binding strength.
J Biol Chem.
2002;
277
3943-3949
112
Ling Y, Maile L A, Clemmons D R.
Tyrosine phosphorylation of the beta3-subunit of the alphaVbeta3 integrin is required for membrane association of the tyrosine phosphatase SHP-2 and its further recruitment to the insulin-like growth factor I receptor.
Mol Endocrinol.
2003;
17
1824-1833
113
Heiser P W, Cowan K J, DeGuzman F R, Lowell C A, Law D A, Phillips D R.
Identification of Fyn as the β3 tyrosine kinase that dynamically regulates αIIbβ3 function and irreversible platelet aggregation.
Blood.
2000;
96
811A
114
Phillips D R, Prasad K S, Manganello J, Bao M, Nannizzi-Alaimo L.
Integrin tyrosine phosphorylation in platelet signaling.
Curr Opin Cell Biol.
2001;
13
546-554
115
Cowan K J, Law D A, Phillips D R.
Identification of shc as the primary protein binding to the tyrosine-phosphorylated beta 3 subunit of alpha IIbbeta 3 during outside-in integrin platelet signaling.
J Biol Chem.
2000;
275
36423-36429
116
Jenkins A L, Nannizzi-Alaimo L, Silver D et al..
Tyrosine phosphorylation of the beta3 cytoplasmic domain mediates integrin-cytoskeletal interactions.
J Biol Chem.
1998;
273
13878-13885
117
Sajid M, Hu Z, Lele M, Stouffer G A.
Protein complexes involving alpha v beta 3 integrins, nonmuscle myosin heavy chain-A, and focal adhesion kinase from in thrombospondin-treated smooth muscle cells.
J Investig Med.
2000;
48
190-197
118
Law D A, DeGuzman F R, Heiser P, Ministri-Madrid K, Killeen N, Phillips D R.
Integrin cytoplasmic tyrosine motif is required for outside-in alphaIIbbeta3 signalling and platelet function.
Nature.
1999;
401
808-811
119
Shock D D, Naik U P, Brittain J E, Alahari S K, Sondek J, Parise L V.
Calcium-dependent properties of CIB binding to the integrin alphaIIb cytoplasmic domain and translocation to the platelet cytoskeleton.
Biochem J.
1999;
342
729-735
120
Naik U P, Patel P M, Parise L V.
Identification of a novel calcium-binding protein that interacts with the integrin alphaIIb cytoplasmic domain.
J Biol Chem.
1997;
272
4651-4654
121
Vallar L, Melchior C, Plancon S et al..
Divalent cations differentially regulate integrin alphaIIb cytoplasmic tail binding to beta3 and to calcium- and integrin-binding protein.
J Biol Chem.
1999;
274
17257-17266
122
Barry W T, Boudignon-Proudhon C, Shock D D et al..
Molecular basis of CIB binding to the integrin alpha IIb cytoplasmic domain.
J Biol Chem.
2002;
277
28877-28883
123
Tsuboi S.
Calcium integrin-binding protein activates platelet integrin alpha IIbbeta 3.
J Biol Chem.
2002;
277
1919-1923
124
Naik U P, Naik M U.
Association of CIB with GPIIb/IIIa during outside-in signaling is required for platelet spreading on fibrinogen.
Blood.
2003;
102
1355-1362
125
Naik M U, Naik U P.
Calcium- and integrin-binding protein regulates focal adhesion kinase activity during platelet spreading on immobilized fibrinogen.
Blood.
2003;
102
3529-3636
126
Kauselmann G, Weiler M, Wulff P et al..
The polo-like protein kinases Fnk and Snk associate with a Ca(2+)-and integrin-binding protein and are regulated dynamically with synaptic plasticity.
EMBO J.
1999;
18
5528-5539
127
Holtrich U, Wolf G, Yuan J et al..
Adhesion induced expression of the serine/threonine kinase Fnk in human macrophages.
Oncogene.
2000;
19
4832-4839
128
Ma S, Liu M A, Yuan Y L, Erikson R L.
The serum-inducible protein kinase Snk is a G1 phase polo-like kinase that is inhibited by the calcium- and integrin-binding protein CIB.
Mol Cancer Res.
2003;
1
376-384
129
Stabler S M, Ostrowski L L, Janicki S M, Monteiro M J.
A myristoylated calcium-binding protein that preferentially interacts with the Alzheimer’s disease presenilin 2 protein.
J Cell Biol.
1999;
145
1277-1292
130
Whitehouse C, Chambers J, Howe K, Cobourne M, Sharpe P, Solomon E.
NBR1 interacts with fasciculation and elongation protein zeta-1 (FEZ1) and calcium and integrin binding protein (CIB) and shows developmentally restricted expression in the neural tube.
Eur J Biochem.
2002;
269
538-545
131
Fang X, Chen C, Wang Q, Gu J, Chi C.
The interaction of the calcium- and integrin-binding protein (CIBP) with the coagulation factor VIII.
Thromb Res.
2001;
102
177-185
132
Haataja L, Kaartinen V, Groffen J, Heisterkamp N.
The small GTPase Rac3 interacts with the integrin-binding protein CIB and promotes integrin alpha(IIb)beta(3)-mediated adhesion and spreading.
J Biol Chem.
2002;
277
8321-8328
133
Kato A, Kawamata N, Tamayose K et al..
Ancient ubiquitous protein 1 binds to the conserved membrane-proximal sequence of the cytoplasmic tail of the integrin alpha subunits that plays a crucial role in the inside-out signaling of alpha IIbbeta 3.
J Biol Chem.
2002;
277
28934-28941
134
Fujimoto T T, Katsutani S, Shimomura T, Fujimura K.
Thrombospondin-bound integrin-associated protein (CD47) physically and functionally modifies Integrin alphaIIbbeta3 by its extracellular domain.
J Biol Chem.
2003;
278
26655-26665
135
Lindberg F P, Bullard D C, Caver T E, Gresham H D, Beaudet A L, Brown E J.
Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice.
Science.
1996;
274
795-798
136
Dorahy D J, Berndt M C, Shafren D R, Burns G F.
CD36 is spatially associated with glycoprotein IIb-IIIa (alpha IIb beta 3) on the surface of resting platelets.
Biochem Biophys Res Commun.
1996;
218
575-581
137
Miao W M, Vasile E, Lane W S, Lawler J.
CD36 associates with CD9 and integrins on human blood platelets.
Blood.
2001;
97
1689-1696
138
Yamamoto N, Akamatsu N, Yamazaki H, Tanoue K.
Normal aggregations of glycoprotein IV (CD36)-deficient platelets from seven healthy Japanese donors.
Br J Haematol.
1992;
81
86-92
139
Boucheix C, Rubinstein E.
Tetraspanins.
Cell Mol Life Sci.
2001;
58
1189-1205
140
Berditchevski F.
Complexes of tetraspanins with integrins: more than meets the eye.
J Cell Sci.
2001;
114
4143-4151
141
Yauch R L, Kazarov A R, Desai B, Lee R T, Hemler M E.
Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151.
J Biol Chem.
2000;
275
9230-9238
142
Fitter S, Sincock P M, Jolliffe C N, Ashman L K.
Transmembrane 4 superfamily protein CD151 (PETA-3) associates with beta 1 and alpha IIb beta 3 integrins in haemopoietic cell lines and modulates cell-cell adhesion.
Biochem J.
1999;
338
61-70
143
Berditchevski F, Odintsova E.
Characterization of integrin-tetraspanin adhesion complexes: role of tetraspanins in integrin signaling.
J Cell Biol.
1999;
146
477-492
144
Sawada S, Yoshimoto M, Odintsova E, Hotchin N A, Berditchevski F.
The tetraspanin CD151 functions as a negative regulator in the adhesion-dependent activation of Ras.
J Biol Chem.
2003;
278
26323-26326
145
Slupsky J R, Seehafer J G, Tang S C, Masellis-Smith A, Shaw A R.
Evidence that monoclonal antibodies against CD9 antigen induce specific association between CD9 and the platelet glycoprotein IIb-IIIa complex.
J Biol Chem.
1989;
264
12289-12293
146
Indig F E, Diaz-Gonzalez F, Ginsberg M H.
Analysis of the tetraspanin CD9-integrin αIIbβ3 (GPIIb-IIIa) complex in platelet membranes and transfected cells.
Biochem J.
1997;
327
291-298
147
Slupsky J R, Kamiguti A S, Rhodes N P, Cawley J C, Shaw A R, Zuzel M.
The platelet antigens CD9, CD42 and integrin alpha IIb beta IIIa can be topographically associated and transduce functionally similar signals.
Eur J Biochem.
1997;
244
168-175
148
Israels S J, McMillan-Ward E M, Easton J, Robertson C, McNicol A.
CD63 associates with the alphaIIb beta3 integrin-CD9 complex on the surface of activated platelets.
Thromb Haemost.
2001;
85
134-141
149
Fenczik C A, Sethi T, Ramos J W, Hughes P E, Ginsberg M H.
Complementation of dominant suppression implicates CD98 in integrin activation.
Nature.
1997;
390
81-85
150
Fenczik C A, Zent R, Dellos M et al..
Distinct domains of CD98hc regulate integrins and amino acid transport.
J Biol Chem.
2001;
276
8746-8752
151
Zent R, Fenczik C A, Calderwood D A, Liu S, Dellos M, Ginsberg M H.
Class- and splice variant-specific association of CD98 with integrin beta cytoplasmic domains.
J Biol Chem.
2000;
275
5059-5064
152
Kolesnikova T V, Mannion B A, Berditchevski F, Hemler M E.
Beta1 integrins show specific association with CD98 protein in low density membranes.
BMC Biochem.
2001;
2
10
153
Miyamoto Y J, Mitchell J S, McIntyre B W.
Physical association and functional interaction between beta1 integrin and CD98 on human T lymphocytes.
Mol Immunol.
2003;
39
739-751
154
Otey C A, Pavalko F M, Burridge K.
An interaction between alpha-actinin and the beta 1 integrin subunit in vitro.
J Cell Biol.
1990;
111
721-729
Dr. Sanford J Shattil
Department of Medicines, University of California San Diego, Leichtag Biomedical Research Building
9500 Gilman Drive, MC 0726
La Jolla, CA 92093
Email: shattil@scripps.edu