Semin Thromb Hemost 2004; 30(4): 427-439
DOI: 10.1055/s-2004-833478
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Protein-Protein Interactions in Platelet αIIbβ3 Signaling

Charito S. Buensuceso1 , 2 , Elena G. Arias-Salgado2 , Sanford J. Shattil2
  • 1Assistant Professor, Division of Hematology-Oncology, Department of Medicine, University of California San Diego, La Jolla, California
  • 2Division of Vascular Biology, Department of Cell Biology, and the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California
Further Information

Publication History

Publication Date:
08 September 2004 (online)

The major platelet integrin αIIbβ3 is the main receptor involved in platelet functions such as aggregation and spreading on extracellular matrix. Like all other integrins, αIIbβ3 is capable of transducing signals both from inside and outside of the cell. To mediate these functions, αIIbβ3 interacts with intracellular and transmembrane proteins. The identification of these proteins, as well as the study of their functions, has provided valuable insights into integrin-mediated function and signaling. This review summarizes the known proteins that directly interact with αIIb3 and provides an overview of their roles in integrin function.

REFERENCES

  • 1 Calderwood D A, Shattil S J, Ginsberg M H. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling.  J Biol Chem. 2000;  275 22607-22610
  • 2 Liu S, Calderwood D A, Ginsberg M H. Integrin cytoplasmic domain-binding proteins.  J Cell Sci. 2000;  113 3563-3571
  • 3 Brakebusch C, Fassler R. The integrin-actin connection, an eternal love affair.  EMBO J. 2003;  22 2324-2333
  • 4 Hemler M E. Integrin associated proteins.  Curr Opin Cell Biol. 1998;  10 578-585
  • 5 Brown E J, Frazier W A. Integrin-associated protein (CD47) and its ligands.  Trends Cell Biol. 2001;  11 130-135
  • 6 Hemler M E. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain.  Annu Rev Cell Dev Biol. 2003;  19 397-422
  • 7 Collier N C, Wang K. Purification and properties of human platelet P235. A high molecular weight protein substrate of endogenous calcium-activated protease(s).  J Biol Chem. 1982;  257 6937-6943
  • 8 Horwitz A, Duggan K, Buck C, Beckerle M C, Burridge K. Interaction of plasma membrane fibronectin receptor with talin-a transmembrane linkage.  Nature. 1986;  320 531-533
  • 9 Jockusch B M, Bubeck P, Giehl K et al.. The molecular architecture of focal adhesions.  Annu Rev Cell Dev Biol. 1995;  11 379-416
  • 10 Borowsky M L, Hynes R O. Layilin, a novel talin-binding transmembrane protein homologous with C-type lectins, is localized in membrane ruffles.  J Cell Biol. 1998;  143 429-442
  • 11 Ling K, Doughman R L, Firestone A J, Bunce M W, Anderson R A. Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions.  Nature. 2002;  420 89-93
  • 12 Pfaff M, Liu S, Erle D J, Ginsberg M H. Integrin beta cytoplasmic domains differentially bind to cytoskeletal proteins.  J Biol Chem. 1998;  273 6104-6109
  • 13 Knezevic I, Leisner T M, Lam S C. Direct binding of the platelet integrin alphaIIbbeta3 (GPIIb-IIIa) to talin. Evidence that interaction is mediated through the cytoplasmic domains of both alphaIIb and beta3.  J Biol Chem. 1996;  271 16416-16421
  • 14 Sampath R, Gallagher P J, Pavalko F M. Cytoskeletal interactions with the leukocyte integrin beta2 cytoplasmic tail. Activation-dependent regulation of associations with talin and alpha-actinin.  J Biol Chem. 1998;  273 33588-33594
  • 15 Calderwood D A, Zent R, Grant R, Rees D J, Hynes R O, Ginsberg M H. The talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation.  J Biol Chem. 1999;  274 28071-28074
  • 16 Patil S, Jedsadayanmata A, Wencel-Drake J D, Wang W, Knezevic I, Lam S C. Identification of a talin-binding site in the integrin beta(3) subunit distinct from the NPLY regulatory motif of post-ligand binding functions. The talin n-terminal head domain interacts with the membrane-proximal region of the beta(3) cytoplasmic tail.  J Biol Chem. 1999;  274 28575-28583
  • 17 Rees D J, Ades S E, Singer S J, Hynes R O. Sequence and domain structure of talin.  Nature. 1990;  347 685-689
  • 18 Yan B, Calderwood D A, Yaspan B, Ginsberg M H. Calpain cleavage promotes talin binding to the beta 3 integrin cytoplasmic domain.  J Biol Chem. 2001;  276 28164-28170
  • 19 Xing B, Jedsadayanmata A, Lam S C. Localization of an integrin binding site to the C terminus of talin.  J Biol Chem. 2001;  276 44373-44378
  • 20 Calderwood D A, Yan B, de Pereda J M et al.. The phosphotyrosine binding-like domain of talin activates integrins.  J Biol Chem. 2002;  277 21749-21758
  • 21 Law D A, Nannizzi-Alaimo L, Phillips D R. Outside-in integrin signal transduction. Alpha IIb beta 3-(GP IIb IIIa) tyrosine phosphorylation induced by platelet aggregation.  J Biol Chem. 1996;  271 10811-10815
  • 22 Garcia-Alvarez B, de Pereda J M, Calderwood D A et al.. Structural determinants of integrin recognition by talin.  Mol Cell. 2003;  11 49-58
  • 23 Ulmer T S, Calderwood D A, Ginsberg M H, Campbell I D. Domain-specific interactions of talin with the membrane-proximal region of the integrin beta3 subunit.  Biochemistry. 2003;  42 8307-8312
  • 24 Tadokoro S, Shattil S J, Eto K et al.. Talin binding to integrin beta tails: a final common step in integrin activation.  Science. 2003;  302 103-106
  • 25 Vinogradova O, Velyvis A, Velyviene A et al.. A structural mechanism of integrin αIIbβ3 “inside-out” activation as regulated by its cytoplasmic face.  Cell. 2002;  110 587-597
  • 26 Kim M, Carman C V, Springer T A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins.  Science. 2003;  301 1720-1725
  • 27 Calderwood D A, Fujioka Y, de Pereda J M et al.. Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling.  Proc Natl Acad Sci USA. 2003;  100 2272-2277
  • 28 Monkley S J, Zhou X H, Kinston S J et al.. Disruption of the talin gene arrests mouse development at the gastrulation stage.  Dev Dyn. 2000;  219 560-574
  • 29 Monkley S J, Pritchard C A, Critchley D R. Analysis of the mammalian talin2 gene TLN2.  Biochem Biophys Res Commun. 2001;  286 880-885
  • 30 Bertagnolli M E, Locke S J, Hensler M E, Bray P F, Beckerle M C. Talin distribution and phosphorylation in thrombin-activated platelets.  J Cell Sci. 1993;  106 1189-1199
  • 31 Shattil S J, O’Toole T, Eigenthaler M et al.. Beta 3-endonexin, a novel polypeptide that interacts specifically with the cytoplasmic tail of the integrin beta 3 subunit.  J Cell Biol. 1995;  131 807-816
  • 32 Li D, Desai-Yajnik V, Lo E, Schapira M, Abagyan R, Samuels H H. NRIF3 is a novel coactivator mediating functional specificity of nuclear hormone receptors.  Mol Cell Biol. 1999;  19 7191-7202
  • 33 Eigenthaler M, Hofferer L, Shattil S J, Ginsberg M H. A conserved sequence motif in the integrin beta3 cytoplasmic domain is required for its specific interaction with beta3-endonexin.  J Biol Chem. 1997;  272 7693-7698
  • 34 Kashiwagi H, Schwartz M A, Eigenthaler M, Davis K A, Ginsberg M H, Shattil S J. Affinity modulation of platelet integrin alphaIIbbeta3 by beta3-endonexin, a selective binding partner of the beta3 integrin cytoplasmic tail.  J Cell Biol. 1997;  137 1433-1443
  • 35 Gawaz M, Besta F, Ylanne J et al.. The NITY motif of the beta-chain cytoplasmic domain is involved in stimulated internalization of the beta3 integrin A isoform.  J Cell Sci. 2001;  114 1101-1113
  • 36 Ohtoshi A, Otoshi H. Analysis of beta3-endonexin mutants for their ability to interact with cyclin A.  Mol Genet Genomics. 2001;  266 664-671
  • 37 Ohtoshi A, Maeda T, Higashi H, Ashizawa S, Yamada M, Hatakeyama M. beta3-endonexin as a novel inhibitor of cyclin A-associated kinase.  Biochem Biophys Res Commun. 2000;  267 947-952
  • 38 Besta F, Massberg S, Brand K et al.. Role of beta(3)-endonexin in the regulation of NF-kappaB-dependent expression of urokinase-type plasminogen activator receptor.  J Cell Sci. 2002;  115 3879-3888
  • 39 Golden A, Nemeth S P, Brugge J S. Blood platelets express high levels of the pp60c-src-specific tyrosine kinase activity.  Proc Natl Acad Sci USA. 1986;  83 852-856
  • 40 Huang M M, Bolen J B, Barnwell J W, Shattil S J, Brugge J S. Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets.  Proc Natl Acad Sci USA. 1991;  88 7844-7848
  • 41 Stenberg P E, Pestina T I, Barrie R J, Jackson C W. The Src family kinases, Fgr, Fyn, Lck, and Lyn, colocalize with coated membranes in platelets.  Blood. 1997;  89 2384-2393
  • 42 Dorahy D J, Berndt M C, Burns G F. Capture by chemical crosslinkers provides evidence that integrin alpha IIb beta 3 forms a complex with protein tyrosine kinases in intact platelets.  Biochem J. 1995;  309 481-490
  • 43 Kralisz U, Cierniewski C S. Association of pp60c-src with alpha IIb beta 3 in resting platelets.  Biochem Mol Biol Int. 1998;  45 735-743
  • 44 Obergfell A, Eto K, Mocsai A et al.. Coordinate interactions of Csk, Src, and Syk kinases with [alpha]IIb[beta]3 initiate integrin signaling to the cytoskeleton.  J Cell Biol. 2002;  157 265-275
  • 45 Horvath A R, Muszbek L, Kellie S. Translocation of pp60c-src to the cytoskeleton during platelet aggregation.  EMBO J. 1992;  11 855-861
  • 46 Clark E A, Brugge J S. Redistribution of activated pp60c-src to integrin-dependent cytoskeletal complexes in thrombin-stimulated platelets.  Mol Cell Biol. 1993;  13 1863-1871
  • 47 Klinghoffer R A, Sachsenmaier C, Cooper J A, Soriano P. Src family kinases are required for integrin but not PDGFR signal transduction.  EMBO J. 1999;  18 2459-2471
  • 48 Harrison S C. Variation on a Src-like theme.  Cell. 2003;  112 737-740
  • 49 Arias-Salgado E G, Lizano S, Sarkar S, Brugge J S, Ginsberg M H, Shattil S J. Src kinase activation by direct interaction with the integrin {beta} cytoplasmic domain.  Proc Natl Acad Sci USA. 2003;  100 13298-13302
  • 50 Yamaguchi H, Hendrickson W A. Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation.  Nature. 1996;  384 484-489
  • 51 Sicheri F, Moarefi I, Kuriyan J. Crystal structure of the Src family tyrosine kinase Hck.  Nature. 1997;  385 602-609
  • 52 Obergfell A, Buensuceso C, Shattil S J. Alpha IIb beta 3 functions as a molecular anchor for proteins that mediate integrin signaling.  Blood. 2002;  101 122a
  • 53 Buensuceso C, De Virgilio M, Shattil S J. Detection of integrin αIIbβ3 clustering in living cells.  J Biol Chem. 2003;  278 15217-15224
  • 54 Su J, Muranjan M, Sap J. Receptor protein tyrosine phosphatase α activates Src-family kinases and controls integrin-mediated responses in fibroblasts.  Curr Biol. 1999;  9 505-511
  • 55 Chan A C, Iwashima M, Turck C W, Weiss A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain.  Cell. 1992;  71 649-662
  • 56 Muller B, Cooper L, Terhorst C. Molecular cloning of the human homologue to the pig protein-tyrosine kinase syk.  Immunogenetics. 1994;  39 359-362
  • 57 Coopman P J, Do M T, Barth M et al.. The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells.  Nature. 2000;  406 742-747
  • 58 Inatome R, Yanagi S, Takano T, Yamamura H. A critical role for Syk in endothelial cell proliferation and migration.  Biochem Biophys Res Commun. 2001;  286 195-199
  • 59 Tsujimura T, Yanagi S, Inatome R et al.. Syk protein-tyrosine kinase is involved in neuron-like differentiation of embryonal carcinoma P19 cells.  FEBS Lett. 2001;  489 129-133
  • 60 Yamada T, Fujieda S, Yanagi S et al.. IL-1 induced chemokine production through the association of Syk with TNF receptor-associated factor-6 in nasal fibroblast lines.  J Immunol. 2001;  167 283-288
  • 61 Woodside D G, Obergfell A, Leng L et al.. Activation of Syk protein tyrosine kinase through interaction with integrin beta cytoplasmic domains.  Curr Biol. 2001;  11 1799-1804
  • 62 Hato T, Pampori N, Shattil S J. Complementary roles for receptor clustering and conformational change in the adhesive and signaling functions of integrin alphaIIb beta3.  J Cell Biol. 1998;  141 1685-1695
  • 63 Clark E A, Shattil S J, Ginsberg M H, Bolen J, Brugge J S. Regulation of the protein tyrosine kinase pp72syk by platelet agonists and the integrin alpha IIb beta 3.  J Biol Chem. 1994;  269 28859-28864
  • 64 Woodside D G, Obergfell A, Talapatra A, Calderwood D A, Shattil S J, Ginsberg M H. The N-terminal SH2 domains of Syk and ZAP-70 mediate phosphotyrosine-independent binding to integrin beta cytoplasmic domains.  J Biol Chem. 2002;  277 39401-39408
  • 65 Lin T H, Rosales C, Mondal K, Bolen J B, Haskill S, Juliano R L. Integrin-mediated tyrosine phosphorylation and cytokine message induction in monocytic cells. A possible signaling role for the Syk tyrosine kinase.  J Biol Chem. 1995;  270 16189-16197
  • 66 Yan S R, Huang M, Berton G. Signaling by adhesion in human neutrophils: activation of the p72syk tyrosine kinase and formation of protein complexes containing p72syk and Src family kinases in neutrophils spreading over fibrinogen.  J Immunol. 1997;  158 1902-1910
  • 67 Miller L A, Hong J J, Kinch M S, Harrison M L, Geahlen R L. The engagement of beta1 integrins on promonocytic cells promotes phosphorylation of Syk and formation of a protein complex containing Lyn and beta1 integrin.  Eur J Immunol. 1999;  29 1426-1434
  • 68 Mocsai A, Zhou M, Meng F, Tybulewicz V L, Lowell C A. Syk is required for integrin signaling in neutrophils.  Immunity. 2002;  16 547-558
  • 69 Vines C M, Potter J W, Xu Y et al.. Inhibition of beta 2 integrin receptor and Syk kinase signaling in monocytes by the Src family kinase Fgr.  Immunity. 2001;  15 507-519
  • 70 Miranti C K, Leng L, Maschberger P, Brugge J S, Shattil S J. Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1.  Curr Biol. 1998;  8 1289-1299
  • 71 Obergfell A, Judd B A, del Pozo M A, Schwartz M A, Koretzky G A, Shattil S J. The molecular adapter SLP-76 relays signals from platelet integrin alphaIIbbeta3 to the actin cytoskeleton.  J Biol Chem. 2001;  276 5916-5923
  • 72 Judd B A, Myung P S, Leng L et al.. Hematopoietic reconstitution of SLP-76 corrects hemostasis and platelet signaling through alpha IIb beta 3 and collagen receptors.  Proc Natl Acad Sci USA. 2000;  97 12056-12061
  • 73 Wonerow P, Obergfell A, Wilde J I et al.. Differential role of glycolipid-enriched membrane domains in glycoprotein VI- and integrin-mediated phospholipase Cgamma2 regulation in platelets.  Biochem J. 2002;  364 755-765
  • 74 Clark E A, Brugge J S. Integrins and signal transduction pathways: the road taken.  Science. 1995;  268 233-239
  • 75 Clark E A, Shattil S J, Brugge J S. Regulation of protein tyrosine kinases in platelets.  Trends Biochem Sci. 1994;  19 464-469
  • 76 Keely P J, Parise L V. The alpha2beta1 integrin is a necessary co-receptor for collagen-induced activation of Syk and the subsequent phosphorylation of phospholipase Cgamma2 in platelets.  J Biol Chem. 1996;  271 26668-26676
  • 77 Sarkar S, Rooney M M, Lord S T. Activation of integrin-beta3-associated syk in platelets.  Biochem J. 1999;  338 677-680
  • 78 Law D A, Nannizzi-Alaimo L, Ministri K et al.. Genetic and pharmacological analyses of Syk function in alphaIIbbeta3 signaling in platelets.  Blood. 1999;  93 2645-2652
  • 79 Ron D, Chen C H, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D. Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins.  Proc Natl Acad Sci USA. 1994;  91 839-843
  • 80 Mochly-Rosen D, Gordon A S. Anchoring proteins for protein kinase C: a means for isozyme selectivity.  FASEB J. 1998;  12 35-42
  • 81 Yarwood S J, Steele M R, Scotland G, Houslay M D, Bolger G B. The RACK1 signaling scaffold protein selectively interacts with the cAMP-specific phosphodiesterase PDE4D5 isoform.  J Biol Chem. 1999;  274 14909-14917
  • 82 Geijsen N, Spaargaren M, Raaijmakers J A, Lammers J W, Koenderman L, Coffer P J. Association of RACK1 and PKCbeta with the common beta-chain of the IL-5/IL-3/GM-CSF receptor.  Oncogene. 1999;  18 5126-5130
  • 83 Rodriguez M M, Ron D, Touhara K, Chen C H, Mochly-Rosen D. RACK1, a protein kinase C anchoring protein, coordinates the binding of activated protein kinase C and select pleckstrin homology domains in vitro.  Biochemistry. 1999;  38 13787-13794
  • 84 Buensuceso C S, Woodside D, Huff J L, Plopper G E, O'Toole T E. The WD protein Rack1 mediates protein kinase C and integrin-dependent cell migration.  J Cell Sci. 2001;  114 1691-1698
  • 85 Liliental J, Chang D D. Rack1, a receptor for activated protein kinase C, interacts with integrin beta subunit.  J Biol Chem. 1998;  273 2379-2383
  • 86 Besson A, Wilson T L, Yong V W. The anchoring protein RACK1 links protein kinase Cepsilon to integrin beta chains. Requirements for adhesion and motility.  J Biol Chem. 2002;  277 22073-22084
  • 87 Cox E A, Bennin D, Doan A T, O'Toole T, Huttenlocher A. RACK1 regulates integrin-mediated adhesion, protrusion, and chemotactic cell migration via its Src-binding site.  Mol Biol Cell. 2003;  14 658-669
  • 88 Hannigan G E, Leung-Hagesteijn C, Fitz-Gibbon L et al.. Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase.  Nature. 1996;  379 91-96
  • 89 Dedhar S, Williams B, Hannigan G. Integrin-linked kinase (ILK): a regulator of integrin and growth-factor signalling.  Trends Cell Biol. 1999;  9 319-323
  • 90 Dedhar S. Cell-substrate interactions and signaling through ILK.  Curr Opin Cell Biol. 2000;  12 250-256
  • 91 Wu C Y, Dedhar S. Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes.  J Cell Biol. 2001;  155 505-510
  • 92 Pasquet J M, Noury M, Nurden A T. Evidence that the platelet integrin alphaIIb beta3 is regulated by the integrin-linked kinase, ILK, in a PI3-kinase dependent pathway.  Thromb Haemost. 2002;  88 115-122
  • 93 Yamaji S, Suzuki A, Kanamori H et al.. Possible role of ILK-affixin complex in integrin-cytoskeleton linkage during platelet aggregation.  Biochem Biophys Res Commun. 2002;  297 1324-1331
  • 94 Yamaji S, Suzuki A, Sugiyama Y et al.. A novel integrin-linked kinase-binding protein, affixin, is involved in the early stage of cell-substrate interaction.  J Cell Biol. 2001;  153 1251-1264
  • 95 Barry F A, Gibbins J M. Protein kinase B is regulated in platelets by the collagen receptor glycoprotein VI.  J Biol Chem. 2002;  277 12874-12878
  • 96 Price M G. Skelemins: cytoskeletal proteins located at the periphery of M-discs in mammalian striated muscle.  J Cell Biol. 1987;  104 1325-1336
  • 97 Reddy K B, Gascard P, Price M G, Negrescu E V, Fox J E. Identification of an interaction between the m-band protein skelemin and beta-integrin subunits. Colocalization of a skelemin-like protein with beta1- and beta3-integrins in non-muscle cells.  J Biol Chem. 1998;  273 35039-35047
  • 98 Reddy K B, Bialkowska K, Fox J E. Dynamic modulation of cytoskeletal proteins linking integrins to signaling complexes in spreading cells. Role of skelemin in initial integrin-induced spreading.  J Biol Chem. 2001;  276 28300-28308
  • 99 Djinovic-Carugo K, Gautel M, Ylanne J, Young P. The spectrin repeat: a structural platform for cytoskeletal protein assemblies.  FEBS Lett. 2002;  513 119-123
  • 100 Goldmann W H. Kinetic determination of focal adhesion protein formation.  Biochem Biophys Res Commun. 2000;  271 553-557
  • 101 Otey C A, Vasquez G B, Burridge K, Erickson B W. Mapping of the alpha-actinin binding site within the beta 1 integrin cytoplasmic domain.  J Biol Chem. 1993;  268 21193-21197
  • 102 Lyman S, Gilmore A, Burridge K, Gidwitz S, White II G C. Integrin-mediated activation of focal adhesion kinase is independent of focal adhesion formation or integrin activation. Studies with activated and inhibitory beta3 cytoplasmic domain mutants.  J Biol Chem. 1997;  272 22538-22547
  • 103 Izaguirre G, Aguirre L, Hu Y P et al.. The cytoskeletal/non-muscle isoform of alpha-actinin is phosphorylated on its actin-binding domain by the focal adhesion kinase.  J Biol Chem. 2001;  276 28676-28685
  • 104 Stossel T P, Condeelis J, Cooley L et al.. Filamins as integrators of cell mechanics and signalling.  Nat Rev Mol Cell Biol. 2001;  2 138-145
  • 105 Gorlin J B, Yamin R, Egan S et al.. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring.  J Cell Biol. 1990;  111 1089-1105
  • 106 Pavalko F M, Otey C A, Burridge K. Identification of a filamin isoform enriched at the ends of stress fibers in chicken embryo fibroblasts.  J Cell Sci. 1989;  94 109-118
  • 107 Loo D T, Kanner S B, Aruffo A. Filamin binds to the cytoplasmic domain of the beta1-integrin. Identification of amino acids responsible for this interaction.  J Biol Chem. 1998;  273 23304-23312
  • 108 Sharma C P, Ezzell R M, Arnaout M A. Direct interaction of filamin (ABP-280) with the beta 2-integrin subunit CD18.  J Immunol. 1995;  154 3461-3470
  • 109 Calderwood D A, Huttenlocher A, Kiosses W B et al.. Increased filamin binding to beta-integrin cytoplasmic domains inhibits cell migration.  Nat Cell Biol. 2001;  3 1060-1068
  • 110 Williamson D, Pikovski I, Cranmer S L et al.. Interaction between platelet glycoprotein Ibα and filamin-1 is essential for glycoprotein Ib/IX receptor anchorage at high shear.  J Biol Chem. 2002;  277 2151-2159
  • 111 Datta A, Huber F, Boettiger D. Phosphorylation of beta3 integrin controls ligand binding strength.  J Biol Chem. 2002;  277 3943-3949
  • 112 Ling Y, Maile L A, Clemmons D R. Tyrosine phosphorylation of the beta3-subunit of the alphaVbeta3 integrin is required for membrane association of the tyrosine phosphatase SHP-2 and its further recruitment to the insulin-like growth factor I receptor.  Mol Endocrinol. 2003;  17 1824-1833
  • 113 Heiser P W, Cowan K J, DeGuzman F R, Lowell C A, Law D A, Phillips D R. Identification of Fyn as the β3 tyrosine kinase that dynamically regulates αIIbβ3 function and irreversible platelet aggregation.  Blood. 2000;  96 811A
  • 114 Phillips D R, Prasad K S, Manganello J, Bao M, Nannizzi-Alaimo L. Integrin tyrosine phosphorylation in platelet signaling.  Curr Opin Cell Biol. 2001;  13 546-554
  • 115 Cowan K J, Law D A, Phillips D R. Identification of shc as the primary protein binding to the tyrosine-phosphorylated beta 3 subunit of alpha IIbbeta 3 during outside-in integrin platelet signaling.  J Biol Chem. 2000;  275 36423-36429
  • 116 Jenkins A L, Nannizzi-Alaimo L, Silver D et al.. Tyrosine phosphorylation of the beta3 cytoplasmic domain mediates integrin-cytoskeletal interactions.  J Biol Chem. 1998;  273 13878-13885
  • 117 Sajid M, Hu Z, Lele M, Stouffer G A. Protein complexes involving alpha v beta 3 integrins, nonmuscle myosin heavy chain-A, and focal adhesion kinase from in thrombospondin-treated smooth muscle cells.  J Investig Med. 2000;  48 190-197
  • 118 Law D A, DeGuzman F R, Heiser P, Ministri-Madrid K, Killeen N, Phillips D R. Integrin cytoplasmic tyrosine motif is required for outside-in alphaIIbbeta3 signalling and platelet function.  Nature. 1999;  401 808-811
  • 119 Shock D D, Naik U P, Brittain J E, Alahari S K, Sondek J, Parise L V. Calcium-dependent properties of CIB binding to the integrin alphaIIb cytoplasmic domain and translocation to the platelet cytoskeleton.  Biochem J. 1999;  342 729-735
  • 120 Naik U P, Patel P M, Parise L V. Identification of a novel calcium-binding protein that interacts with the integrin alphaIIb cytoplasmic domain.  J Biol Chem. 1997;  272 4651-4654
  • 121 Vallar L, Melchior C, Plancon S et al.. Divalent cations differentially regulate integrin alphaIIb cytoplasmic tail binding to beta3 and to calcium- and integrin-binding protein.  J Biol Chem. 1999;  274 17257-17266
  • 122 Barry W T, Boudignon-Proudhon C, Shock D D et al.. Molecular basis of CIB binding to the integrin alpha IIb cytoplasmic domain.  J Biol Chem. 2002;  277 28877-28883
  • 123 Tsuboi S. Calcium integrin-binding protein activates platelet integrin alpha IIbbeta 3.  J Biol Chem. 2002;  277 1919-1923
  • 124 Naik U P, Naik M U. Association of CIB with GPIIb/IIIa during outside-in signaling is required for platelet spreading on fibrinogen.  Blood. 2003;  102 1355-1362
  • 125 Naik M U, Naik U P. Calcium- and integrin-binding protein regulates focal adhesion kinase activity during platelet spreading on immobilized fibrinogen.  Blood. 2003;  102 3529-3636
  • 126 Kauselmann G, Weiler M, Wulff P et al.. The polo-like protein kinases Fnk and Snk associate with a Ca(2+)-and integrin-binding protein and are regulated dynamically with synaptic plasticity.  EMBO J. 1999;  18 5528-5539
  • 127 Holtrich U, Wolf G, Yuan J et al.. Adhesion induced expression of the serine/threonine kinase Fnk in human macrophages.  Oncogene. 2000;  19 4832-4839
  • 128 Ma S, Liu M A, Yuan Y L, Erikson R L. The serum-inducible protein kinase Snk is a G1 phase polo-like kinase that is inhibited by the calcium- and integrin-binding protein CIB.  Mol Cancer Res. 2003;  1 376-384
  • 129 Stabler S M, Ostrowski L L, Janicki S M, Monteiro M J. A myristoylated calcium-binding protein that preferentially interacts with the Alzheimer’s disease presenilin 2 protein.  J Cell Biol. 1999;  145 1277-1292
  • 130 Whitehouse C, Chambers J, Howe K, Cobourne M, Sharpe P, Solomon E. NBR1 interacts with fasciculation and elongation protein zeta-1 (FEZ1) and calcium and integrin binding protein (CIB) and shows developmentally restricted expression in the neural tube.  Eur J Biochem. 2002;  269 538-545
  • 131 Fang X, Chen C, Wang Q, Gu J, Chi C. The interaction of the calcium- and integrin-binding protein (CIBP) with the coagulation factor VIII.  Thromb Res. 2001;  102 177-185
  • 132 Haataja L, Kaartinen V, Groffen J, Heisterkamp N. The small GTPase Rac3 interacts with the integrin-binding protein CIB and promotes integrin alpha(IIb)beta(3)-mediated adhesion and spreading.  J Biol Chem. 2002;  277 8321-8328
  • 133 Kato A, Kawamata N, Tamayose K et al.. Ancient ubiquitous protein 1 binds to the conserved membrane-proximal sequence of the cytoplasmic tail of the integrin alpha subunits that plays a crucial role in the inside-out signaling of alpha IIbbeta 3.  J Biol Chem. 2002;  277 28934-28941
  • 134 Fujimoto T T, Katsutani S, Shimomura T, Fujimura K. Thrombospondin-bound integrin-associated protein (CD47) physically and functionally modifies Integrin alphaIIbbeta3 by its extracellular domain.  J Biol Chem. 2003;  278 26655-26665
  • 135 Lindberg F P, Bullard D C, Caver T E, Gresham H D, Beaudet A L, Brown E J. Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice.  Science. 1996;  274 795-798
  • 136 Dorahy D J, Berndt M C, Shafren D R, Burns G F. CD36 is spatially associated with glycoprotein IIb-IIIa (alpha IIb beta 3) on the surface of resting platelets.  Biochem Biophys Res Commun. 1996;  218 575-581
  • 137 Miao W M, Vasile E, Lane W S, Lawler J. CD36 associates with CD9 and integrins on human blood platelets.  Blood. 2001;  97 1689-1696
  • 138 Yamamoto N, Akamatsu N, Yamazaki H, Tanoue K. Normal aggregations of glycoprotein IV (CD36)-deficient platelets from seven healthy Japanese donors.  Br J Haematol. 1992;  81 86-92
  • 139 Boucheix C, Rubinstein E. Tetraspanins.  Cell Mol Life Sci. 2001;  58 1189-1205
  • 140 Berditchevski F. Complexes of tetraspanins with integrins: more than meets the eye.  J Cell Sci. 2001;  114 4143-4151
  • 141 Yauch R L, Kazarov A R, Desai B, Lee R T, Hemler M E. Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151.  J Biol Chem. 2000;  275 9230-9238
  • 142 Fitter S, Sincock P M, Jolliffe C N, Ashman L K. Transmembrane 4 superfamily protein CD151 (PETA-3) associates with beta 1 and alpha IIb beta 3 integrins in haemopoietic cell lines and modulates cell-cell adhesion.  Biochem J. 1999;  338 61-70
  • 143 Berditchevski F, Odintsova E. Characterization of integrin-tetraspanin adhesion complexes: role of tetraspanins in integrin signaling.  J Cell Biol. 1999;  146 477-492
  • 144 Sawada S, Yoshimoto M, Odintsova E, Hotchin N A, Berditchevski F. The tetraspanin CD151 functions as a negative regulator in the adhesion-dependent activation of Ras.  J Biol Chem. 2003;  278 26323-26326
  • 145 Slupsky J R, Seehafer J G, Tang S C, Masellis-Smith A, Shaw A R. Evidence that monoclonal antibodies against CD9 antigen induce specific association between CD9 and the platelet glycoprotein IIb-IIIa complex.  J Biol Chem. 1989;  264 12289-12293
  • 146 Indig F E, Diaz-Gonzalez F, Ginsberg M H. Analysis of the tetraspanin CD9-integrin αIIbβ3 (GPIIb-IIIa) complex in platelet membranes and transfected cells.  Biochem J. 1997;  327 291-298
  • 147 Slupsky J R, Kamiguti A S, Rhodes N P, Cawley J C, Shaw A R, Zuzel M. The platelet antigens CD9, CD42 and integrin alpha IIb beta IIIa can be topographically associated and transduce functionally similar signals.  Eur J Biochem. 1997;  244 168-175
  • 148 Israels S J, McMillan-Ward E M, Easton J, Robertson C, McNicol A. CD63 associates with the alphaIIb beta3 integrin-CD9 complex on the surface of activated platelets.  Thromb Haemost. 2001;  85 134-141
  • 149 Fenczik C A, Sethi T, Ramos J W, Hughes P E, Ginsberg M H. Complementation of dominant suppression implicates CD98 in integrin activation.  Nature. 1997;  390 81-85
  • 150 Fenczik C A, Zent R, Dellos M et al.. Distinct domains of CD98hc regulate integrins and amino acid transport.  J Biol Chem. 2001;  276 8746-8752
  • 151 Zent R, Fenczik C A, Calderwood D A, Liu S, Dellos M, Ginsberg M H. Class- and splice variant-specific association of CD98 with integrin beta cytoplasmic domains.  J Biol Chem. 2000;  275 5059-5064
  • 152 Kolesnikova T V, Mannion B A, Berditchevski F, Hemler M E. Beta1 integrins show specific association with CD98 protein in low density membranes.  BMC Biochem. 2001;  2 10
  • 153 Miyamoto Y J, Mitchell J S, McIntyre B W. Physical association and functional interaction between beta1 integrin and CD98 on human T lymphocytes.  Mol Immunol. 2003;  39 739-751
  • 154 Otey C A, Pavalko F M, Burridge K. An interaction between alpha-actinin and the beta 1 integrin subunit in vitro.  J Cell Biol. 1990;  111 721-729

 Dr.
Sanford J Shattil

Department of Medicines, University of California San Diego, Leichtag Biomedical Research Building

9500 Gilman Drive, MC 0726

La Jolla, CA 92093

Email: shattil@scripps.edu