References
<A NAME="RU24904ST-1A">1a</A>
Wall ME.
Wani MC.
Cook CE.
Palmer KH.
McPhail AT.
Sim GA.
J. Am. Chem. Soc.
1966,
88:
3888
<A NAME="RU24904ST-1B">1b</A>
Wall ME.
Med. Res. Rev.
1998,
18:
299
<A NAME="RU24904ST-2">2</A> For a review of the camptothecin biochemistry see:
Liehr J.
Giovanella BC.
Verschraegen CF.
Ann. N. Y. Acad. Sci.
2000,
922:
1
<A NAME="RU24904ST-3A">3a</A>
Craig JT.
Nicholas JR.
Sidney MH.
Bioorg. Med. Chem.
2004,
12:
1585
<A NAME="RU24904ST-3B">3b</A>
Redinbo RR.
Stewart L.
Kuhn P.
Champoux JJ.
Hol WGJ.
Science
1998,
279:
1504
<A NAME="RU24904ST-4A">4a</A>
Wall ME.
Wani MC.
Nicholas AW.
Manikumar G.
Tele C.
Moore L.
Truesdale A.
Leitner P.
Besterman JM.
J. Med. Chem.
1993,
36:
2689
<A NAME="RU24904ST-4B">4b</A>
Wang X.
Zhou X.
Hecht SM.
Biochemistry
1999,
38:
4374
<A NAME="RU24904ST-5A">5a</A>
Jaxel C.
Kohn KW.
Wani MC.
Wall ME.
Cancer Res.
1989,
49:
1465
<A NAME="RU24904ST-5B">5b</A>
Fassberg J.
Stella VJ.
J. Pharm. Sci.
1992,
81:
676
<A NAME="RU24904ST-6A">6a</A>
Hertzberg RP.
Caranfa MJ.
Holden KG.
Jakas DR.
Gallagher G.
Mattern MR.
Mong SM.
Bartus JO.
Johnson RK.
Kingsbury WD.
J. Med. Chem.
1989,
32:
715
<A NAME="RU24904ST-6B">6b</A>
Zhao H.
Lee C.
Sai P.
Choe YH.
Boro M.
Pendri A.
Guan S.
Greenwald RB.
J. Org. Chem.
2000,
65:
4601
<A NAME="RU24904ST-7A">7a</A>
Biomedical Aspects of Fluorine Chemistry
Filler R.
Kobayashi Y.
Kodansha/Elsevier Biomedical;
Tokyo:
1982.
<A NAME="RU24904ST-7B">7b</A>
Biomedical Frontiers of Fluorine Chemistry, ACS Symposium Series 639
Ojima I.
McCarthy JR.
Welch JT.
American Chemical Society;
Washington DC:
1996.
<A NAME="RU24904ST-7C">7c</A>
Fusso Yakugaku
Kobayashi Y.
Kumadaki I.
Taguchi T.
Hirokawa;
Tokyo:
1992.
<A NAME="RU24904ST-7D">7d</A>
Welch JT.
Tetrahedron
1987,
43:
3123
<A NAME="RU24904ST-7E">7e</A>
Smart BE. In Organofluorine Chemistry: Principles and Commercial Applications
Banks RE.
Smart BE.
Tatlow JC.
Plenum;
New York:
1994.
Chap. 3.
p.57
<A NAME="RU24904ST-8A">8a</A>
Shibata N.
Tarui T.
Doi Y.
Kirk KL.
Angew. Chem. Int. Ed.
2001,
40:
4461
<A NAME="RU24904ST-8B">8b</A>
Takeuchi Y.
Tarui T.
Shibata N.
Org. Lett.
2000,
2:
639
<A NAME="RU24904ST-8C">8c</A>
Takeuchi Y.
Shiragami T.
Kimura K.
Suzuki E.
Shibata N.
Org. Lett.
1999,
1:
1571
<A NAME="RU24904ST-8D">8d</A>
Shibata N.
Das BK.
Takeuchi Y.
J. Chem. Soc., Perkin Trans. 1
2000,
4234
<A NAME="RU24904ST-8E">8e</A>
Takeuchi Y.
Kirihara K.
Kirk KL.
Shibata N.
Chem. Commun.
2000,
785
<A NAME="RU24904ST-8F">8f</A>
Shibata N.
Das BK.
Honjo H.
Takeuchi Y.
J. Chem. Soc., Perkin Trans. 1
2001,
1605
<A NAME="RU24904ST-8G">8g</A>
Das BK.
Shibata N.
Takeuchi Y.
J. Chem. Soc., Perkin Trans. 1
2002,
197
<A NAME="RU24904ST-9">9</A> The ability of the C-F bond to act as a hydrogen bond acceptor is a matter of
considerable debate. It highly depends on the molecular structures. See:
Shibata N.
Das BK.
Harada K.
Takeuchi Y.
Bando M.
Synlett
2001,
1755 ; and references therein
<A NAME="RU24904ST-10A">10a</A>
Nicholas AW.
Wani MW.
Manikumar G.
Wall ME.
Kohn KW.
Pommier Y.
J. Med. Chem.
1990,
33:
972
<A NAME="RU24904ST-10B">10b</A>
Ejima A.
Terasawa H.
Sugimori M.
Ohsuki S.
Matsumoto K.
Kawato Y.
Yasuoka M.
Tagawa H.
Chem. Pharm. Bull.
1992,
40:
683
<A NAME="RU24904ST-11">11</A>
Adamovics JA.
Cina JA.
Hutchinson CR.
Phytochemistry
1979,
18:
1085
<A NAME="RU24904ST-12A">12a</A>
Muniz K.
Angew. Chem. Int. Ed.
2001,
40:
1653
<A NAME="RU24904ST-12B">12b</A> Hintermann L., Togni A.; Angew. Chem. Int. Ed.; 2000, 39: 4359
<A NAME="RU24904ST-12C">12c</A>
Piana S.
Devillers I.
Togni A.
Rothlisberger U.
Angew. Chem. Int. Ed.
2002,
41:
979
<A NAME="RU24904ST-12D">12d</A>
Togni A.
Mezzetti A.
Barthazy P.
Becker C.
Devillers I.
Frantz R.
Hintermann L.
Perseghini M.
Sanna M.
Chimia
2000,
55:
801
<A NAME="RU24904ST-12E">12e</A>
Cahard D.
Audouard C.
Plaquevent J.-C.
Roques N.
Org. Lett.
2000,
2:
3699
<A NAME="RU24904ST-12F">12f</A>
Mohar B.
Baudoux J.
Plaquevent J.-C.
Cahard D.
Angew. Chem. Int. Ed.
2001,
40:
4214
<A NAME="RU24904ST-12G">12g</A>
Kim DY.
Park E.
J. Org. Lett.
2002,
4:
545
<A NAME="RU24904ST-12H">12h</A>
Hamashima Y.
Yagi K.
Takano H.
Tamas L.
Sodeoka M.
J. Am. Chem. Soc.
2002,
124:
14530
<A NAME="RU24904ST-12I">12i</A>
Ma J.-A.
Cahard D.
Tetrahedron: Asymmetry
2004,
15:
1007
<A NAME="RU24904ST-12J">12j</A>
Ibrahim H.
Togni A.
Chem. Commun.
2004,
1147
<A NAME="RU24904ST-13A">13a</A>
Shibata N.
Suzuki E.
Takeuchi Y.
J. Am. Chem. Soc.
2000,
122:
10728
<A NAME="RU24904ST-13B">13b</A>
Shibata N.
Suzuki E.
Asahi T.
Shiro M.
J. Am. Chem. Soc.
2001,
123:
7001
<A NAME="RU24904ST-13C">13c</A>
Shibata N.
Ishimaru T.
Suzuki E.
Kirk KL.
J. Org. Chem.
2003,
68:
2494
<A NAME="RU24904ST-13D">13d</A>
Shibata N.
Pharmacia
2003,
39:
666
<A NAME="RU24904ST-14">14</A>
Shibata N.
Ishimaru T.
Nagai T.
Kohno J.
Toru T.
Synlett
2004,
1703
<A NAME="RU24904ST-15">15</A>
General Experimental Procedure: A solution of 3 (82.5 mg, 0.25 mmol) in CH2Cl2 (15.0 mL) was added to a stirred solution of NF-(DHQ)2PHAL [prepared in situ from (DHQ)2PHAL (232.0 mg, 0.30 mmol) and Selectfluor (105.5 mg, 0.30 mmol) in CH2Cl2 (15.0 mL) at r.t. for 30 min] at r.t. under nitrogen atmosphere. After the mixture
was stirred for 1-2 d, H2O was added to the reaction mixture and extracted with CH2Cl2. The organic phase was washed with 3% HCl, sat. NaHCO3, and brine and dried over Na2SO4. The solvent was removed under reduced pressure to give crude product, which was
purified by silica gel column chromatography eluting with 1% MeOH in CHCl3 to give 2 (85.5 mg, 98%) as yellow powders. The ee was determined to be 81% by HPLC analysis
(at a wavelength of 224 nm) using a CHIRALCEL OD-H (250 mm, 4.6 mm) eluting with EtOH
at a flow rate of 1.0 mL/min. t
R [20 (R)-FluoroCPT (2)] = 11.5 min, t
R [20(S)-FluoroCPT (2)] = 14.5 min. 1H NMR (270 MHz, CDCl3): δ = 8.43 (s, 1 H), 8.25 (d, J = 8.6 Hz, 1 H), 7.96 (d, J = 7.6 Hz, 1 H), 7.86 (t, J = 7.6 Hz, 1 H), 7.69 (t, J = 7.6 Hz, 1 H), 7.55 (s, 1 H), 5.51 (AB q, J = 16.5 Hz, 2 H, Δν = 106.4 Hz), 5.33 (s, 2 H), 2.14 (dq, J = 21.3, 7.3 Hz, 2 H), 1.13 (t, J = 7.3 Hz, 3 H). 19F NMR (254 MHz, CDCl3): δ = -163.16 (t, J = 21.3 Hz). ESI-MS: m/z = 350 [M+]; found: 351 [M+ + 1]. IR (KBr): 1765, 1659, 1609 cm-1. Anal. Calcd for C20H15FN2O3: C, 68.57; H, 4.32; N, 8.00. Found: C, 68.68; H, 4.23; N, 7.97.
20(S)-FluoroCPT (2, 92% ee, recrystallized from MeOH-CHCl3): mp 256-258 °C (MeOH-CHCl3). [a]D
26 +71.6 (c 0.153, CHCl3). CD (c 0.054 mmol dm-3, MeOH, 26 °C) Δε/dm3 mol-1 cm-1 (λ/nm): 0 (402.0), -1.24 (357.0), 0 (312.3), +0.46 (304.2), +0.17 (290.2), +16.2
(231.6), +5.12 (221.0).
20(R)-FluoroCPT (2, 98% ee, recrystallized from MeOH-CHCl3): mp 257-259 °C (MeOH-CHCl3). [a]D
26 -75.8 (c 0.172, CHCl3). CD (c 0.054 mmol dm-3, MeOH, 26 °C) Δε/dm3 mol-1 cm-1 (λ/nm) +0.02 (402.0), +1.36 (354.2), 0 (311.9), -0.48 (302.8), -0.13 (287.8), -17.4
(231.8), -8.47 (221.0).
CPT 1: CD (c 0.054 mmol dm-3, MeOH, 26 °C) Δε/dm3 mol-1 cm-1 (λ/nm) -0.06 (402.0), -1.88 (360.8), 0 (309.3), +0.32 (304.2), 0 (291.3), -0.08 (288.8),
0 (284.5), +18.2 (232.8), +6.10 (221.0).
<A NAME="RU24904ST-16A">16a</A>
Lin L.
Shen J.
Zhou T.
Shen C.
Ke M.
Huaxue Xuebao
1989,
47 (5):
506
<A NAME="RU24904ST-16B">16b</A>
Kitajima M.
Nakamaura M.
Takayama H.
Saito K.
Stockigt J.
Amii N.
Tetrahedron Lett.
1997,
38:
8997
<A NAME="RU24904ST-17A">17a</A>
Jennings JP.
Klyne W.
Scopes PM.
J. Chem. Soc.
1965,
7211
<A NAME="RU24904ST-17B">17b</A>
Lowe G.
Potter BVL.
J. Chem. Soc., Perkin Trans. 1
1980,
2029
<A NAME="RU24904ST-17C">17c</A>
Kirk DN.
Tetrahedron
1986,
42:
777
<A NAME="RU24904ST-17D">17d</A>
Takeuchi Y.
Suzuki T.
Satoh A.
Shiragami T.
Shibata N.
J. Org. Chem.
1999,
64:
5708
<A NAME="RU24904ST-18">18</A>
Mazzinia S.
Belluccia MC.
Dallavallea S.
Fraternalib F.
Mondelli R.
Org. Biomol. Chem.
2004,
2 (4):
505
<A NAME="RU24904ST-19">19</A>
In initial cytotoxicity study, both 20(S)- and 20(R)-fluoroCPT (2) were evaluated on three human cancer cell lines (KB, A549 and HT-29) and they appeared
to be less active than CPT (1). Further biological study using pure enantiomer of 2 is now under considerations.