Subscribe to RSS
DOI: 10.1055/s-2004-834825
An Efficient Transformation of (-)-Quinic Acid into Carba-l-rhamnose
Publication History
Publication Date:
20 October 2004 (online)
Abstract
A novel stereoselective synthesis of carba-l-rhamnose from (-)-quinic acid is described. The title compound is obtained with an appropriate pattern of protecting groups to be used for the preparation of Streptococcus pneumoniae type 19F capsular polysaccharide repeating unit.
Key words
carba-l-rhamnose - stereoselective synthesis - capsular polysaccharide - quinic acid - shikimic acid
-
1a
Fedson DS.Anthony J.Scott G. Vaccine 1999, 17: S11 -
1b
Poland GA. Vaccine 1999, 17: 1674 -
2a
Jones C. Carbohydr. Eur. 1998, 21: 10 -
2b
Musher DM. Clin. Infect. Dis. 1991, 14: 801 - 3 See for example:
Austrian R. Vaccine 2001, 19: S71 - 4 See for example:
Arndt B.Porro M. In Immunobiology of Proteins and Peptides VIAtassi MZ. Plenum Press; New York: 1991. p.129 - 5
Redlich H.Sudau W.Szadenings AK.Vollerthun R. Carbohydr. Res. 1992, 226: 57 -
6a
Gaunt MJ.Yu J.Spencer JB. J. Org. Chem. 1998, 63: 4172 -
6b
Wright JA.Yu J.Spencer JB. Tetrahedron Lett. 2001, 42: 4033 -
6c
Xia J.Abbas SA.Locke RD.Piskorz CF.Alderfer JL.Matta KL. Tetrahedron Lett. 2000, 41: 169 -
6d
Liao W.Locke RD.Matta KL. Chem. Commun. 2000, 369 -
6e
Xia J.Alderfer JL.Piskorz CF.Matta KL. Chem.-Eur. J. 2001, 7: 356 - 7
Bianco A.Brufani M.Manna F.Melchioni C. Carbohydr. Res. 2001, 332: 23 - 8
Fernández S.Díaz M.Ferrero M.Gotor V. Tetrahedron Lett. 1997, 38: 5225 - 9
Wang Z.-X.Miller SM.Anderson OP.Shi Y. J. Org. Chem. 2001, 66: 521 - 10
Lautens M.Stammers TA. Synthesis 2002, 1993 - 11
Marshall JA.Bourbeau MP. Org. Lett. 2002, 4: 3931 - 12
Bessodes M.Shamsazar J.Antonakis K. Synthesis 1988, 560 - 14
Takahashi T.Kotsubo H.Iyobe A.Namiki T.Koizumi T. J. Chem. Soc., Perkin Trans. 1 1990, 3065 - 16
Shing TKM.Cui Y.Tang Y. Tetrahedron 1992, 48: 2349 - 17
David S.Hanessian S. Tetrahedron 1985, 41: 643
References
All new compounds have been characterized by proton and carbon NMR, exact mass, and/or elemental analysis. Spectroscopic data for selected compounds:
5a-Carba-2,3-
O
-cyclohexylidene-1-
O
-naphtylmetyl-α-
l-rhamno-pyranoside (
11a): 1H NMR (300 MHz, CDCl3): δ = 1.05 (d, 3 H, J
Me,5 = 6.0 Hz, Me), 1.30-1.80 (m, 12 H,
H-5a and 5 CH2), 1.80-2.00 (m, 1 H, H-5), 3.30 (dd, 1 H, J
3,4 = 7.7 Hz, J
4,5 = 9.9 Hz, H-4), 3.90 (br m, 1 H, H-1), 4.05 (dd, 1 H, J
2,3 = 5.8 Hz, J
3,4 = 7.7 Hz, H-3), 4.29 (br m, 1 H, H-2), 4.72 and 4.78 (ABq, 2 H, CH2-Nap), 7.20-7.90 (m, 7 H, Ar H). 13C NMR (75.4 MHz, CDCl3): δ = 18.21 (q, CH3), 23.81 (t), 24.17 (t), 25.13 (t), 30.06 (d, C-5), 32.60 (t), 35.41 (t), 38.10 (t), 71.32 (t), 74.15 (d), 76.71 (d), 78.12 (d), 80.22 (d), 109.74 (s), 125.99 (d), 126.24 (d, 2 C), 127.79 (d), 127.96 (d), 128.31 (d, 2 C), 133.09 (s), 133.37 (s), 135.77 (s). [α]D
25 +15.7 (c = 1, CHCl3). Mp 99.0-101.0 °C.
5a-Carba-1-naphtylmetyl-3,4-dibenzyl-α-
l-rhamno-pyranoside (14a,b): 1H NMR (300 MHz, CDCl3): 1.10 (d, 3 H, J
6,5 = 6.6 Hz, H-6), 1.62 (dt, 1 H, J
5aA,5aB = J
5aA,5 = 14.5 Hz, J
5aA,1 = 2.5 Hz, H-5aA), 1.86 (dt, 1 H, J
5aA,5aB = 14.5 Hz, J
5aB,5 = J
5aB,1 = 2.7 Hz, H-5aB), 1.97-2.17 (m, 1 H, H-5), 2.58 (br s, 1 H, -OH), 3.39 (t, 1 H, J
3,4 = J
4,5 = 9.1 Hz, H-4), 3.80 (br m, 1 H, H-1), 3.86 (dd, 1 H, J
2,3 = 3.3 Hz, J
3,4 = 9.1 Hz, H-3), 4.19 (br t, 1 H, H-2), 4.55-5.00 (m, 6 H, 3 ABq, CH2-Nap and CH2-Bn), 7.10-8.00 (m, 17 H, Ar H). 13C NMR (75.4 MHz, CDCl3): δ = 18.34 (q, C-6), 31.78 (d,
C-5), 32.05 (t, C-5a), 69.74 (d), 71.20 (t), 72.69 (t), 75.43 (t), 76.16 (d), 82.33 (d), 83.32 (d), 125.71 (d), 125.96 (d), 126.15 (d), 126.25 (d), 127.64 (d), 127.83 (d), 127.92 (d), 127.99 (d), 128.02 (d, 2 C), 128.13 (d, 2 C), 128.24 (d), 128.47 (d, 2 C), 128.60 (d, 2 C), 133.08 (s), 133.40 (s), 136.20 (s), 138.51 (s), 139.14 (s). [α]D
25 -18.3 (c = 1, CHCl3).
The stereochemistry of compounds 11a and 11b was inferred from the coupling constants of the signal of H-C(4) in 1H NMR spectrum. In fact, H-C(4) appeared as a doublet of doublets for both compounds, but in 11a the 3 J were 7.7 Hz and 9.9 Hz, while in compound 11b the constants were 10.8 Hz and 3.2 Hz. Furthermore, H-C(4) in compound 13 appeared as a triplet with a 3 J of 9.9 Hz, clearly indicating the axial orientation of H-C(4) in a chair conformation of 13.