Abstract
The bisphosphonates [(OCH2 CR2 CH2 O)P(O)CHC(O)OR′]2 [R = R′ = Me (5 ), R = Me, R′ = Et (6 ), R = Et, R′ = Me (7 ), R = R′ = Et (8 )], [CH2 (6-t -Bu-4-Me-C6 H4 O)2 P(O)CHC(O)OR]2 [R = Me (9 ), Et (10 )] and [(OCH2 CMe2 CH2 O)P(S)CHC(O)OR]2 [R = Me (11 ), Et (12 )] have been prepared by the reaction of the corresponding cyclic phosphites with dimethyl acetylenedicarboxylate or diethyl acetylenedicarboxylate in the presence of a base [Et3 N or n -BuLi]. The structures of dl -, meso - and (dl + meso ) forms [6a , 6b and 6ab ] of 6 as well as the meso form of 8 are determined from X-ray crystallography. By means of combined X-ray structural and 31 P NMR spectroscopic investigations, it is shown that the meso form can be converted to the dl form and vice versa. A possible rationale invoking the intermediacy of an enolic form is proposed for this observation.
Key words
bisphosphonates - epimerization - diastereomers - X-ray structures -
31 P NMR
References
1a
Eliel EL.
Stereochemistry of Carbon Compounds
McGraw-Hill Inc.;
New Delhi:
1985.
Chap. 4.
1b
Carey FA.
Sundberg RJ.
Advanced Organic Chemistry , Part A
4th ed.:
Kluwer Academic/Plenum;
New York:
2000.
Chap. 2.
Selected references:
2a
Pudovik AN.
Konovalova IV.
Synthesis
1979,
81
2b
Mikroyannidis JA.
Phosphorus, Sulfur Silicon Relat. Elem.
1987,
32:
113
2c
Caesar JC.
Griffiths DV.
Griffiths PA.
Tebby CJ.
J. Chem. Soc., Perkin Trans. 1
1989,
2795
2d
Shen Y.
Zhang Z.
J. Chem. Res., Synop.
1998,
642
2e
Tedeschi L.
Enders D.
Org. Lett.
2001,
3:
3515
2f
Han Li-B.
Zhao C.-Q.
Tanaka M.
J. Org. Chem.
2001,
66:
5929
2g
Zhao C.-Q.
Han L.-B.
Goto M.
Tanaka M.
Angew. Chem. Int. Ed.
2001,
40:
1929
2h
Han Li-B.
Zhao C.-Q.
Onozawa S.-Y.
Goto M.
Tanaka M.
J. Am. Chem. Soc.
2002,
124:
3842
3
Burgada B.
Mohri A.
Phosphorus, Sulfur Silicon Relat. Elem.
1982,
13:
85
4
Beghetto V.
Matteoli U.
Scrivanti A.
Chem. Commun.
2000,
155
Selected references:
5a
Chaloner PA.
Handbook of Coordination Catalysis in Organic Chemistry
Butterworth;
London:
1986.
Chap. 4.
5b
Collman JP.
Hegedus LS.
Norton JR.
Finke RG.
Principles and Applications of Organotransition Metal Chemistry
University Science Books;
Hill Valley, CA:
1987.
5c
Comprehensive Organic Synthesis
Vol. 8:
Trost BM.
Pergamon;
Oxford UK:
1991.
p.667-792
5d
Parshall GW.
Ittel SD.
Homogeneous Catalysis
John Wiley & Sons;
New York:
1992.
p.25-50
Selected references:
6a
Davis AA.
Rosén JJ.
Kiddle JJ.
Tetrahedron Lett.
1998,
39:
6263
6b
Takacs JM.
Jaber MR.
Clement F.
Walters C.
J. Org. Chem.
1998,
63:
6757
6c
Shen Y.
Ni J.
Li P.
Sun J.
J. Chem. Soc., Perkin Trans. 1
1999,
509
6d
Tago K.
Kogen H.
Org. Lett.
2000,
2:
1975
6e
Sun S.
Turchi IJ.
Xu D.
Murray WV.
J. Org. Chem.
2000,
65:
2555
6f
Vaes L.
Rein T.
Org. Lett.
2000,
2:
2611
6g
Reiser U.
Jauch J.
Synlett
2001,
90
6h
Crist RM.
Reddy PV.
Borhan B.
Tetrahedron Lett.
2001,
42:
619
6i
Kawasaki T.
Nonaka Y.
Watanabe K.
Ogawa A.
Higuchi K.
Terashima R.
Masuda K.
Sakamoto M.
J. Org. Chem.
2001,
66:
1200
6j
Pedersen TM.
Hansen EL.
Kane J.
Rein T.
Helquist P.
Norrby P.-O.
Tanner D.
J. Am. Chem. Soc.
2001,
123:
9738
6k
Motoyoshiya J.
Kusaura T.
Kokin K.
Yokoya S.-I.
Takaguchi Y.
Narita S.
Aoyama H.
Tetrahedron
2001,
57:
1715
6l
Inoue H.
Tsubouchi H.
Nagaoka Y.
Tomioka K.
Tetrahedron
2002,
58:
83
6m
Huang X.
Xiong Z.-C.
Chem. Commun.
2003,
1714
6n
Zheng S.
Barlow S.
Parker TC.
Marder SR.
Tetrahedron Lett.
2003,
44:
7989
6o
Xu C.
Yuan C.
Tetrahedron
2004,
60:
3883
7a
Kumaraswamy S.
Kumara Swamy KC.
Tetrahedron Lett.
1997,
38:
2183
7b
Muthiah C.
Praveen Kumar K.
Kumaraswamy S.
Kumara Swamy KC.
Tetrahedron
1998,
54:
14315
7c
Muthiah C.
Praveen Kumar K.
Aruna Mani C.
Kumara Swamy KC.
J. Org. Chem.
2000,
65:
3733
7d
Muthiah C.
Senthil Kumar K.
Vittal JJ.
Kumara Swamy KC.
Synlett
2002,
1787
7e
Chakravarty M.
Srinivas B.
Muthiah C.
Kumara Swamy KC.
Synthesis
2003,
2368
Selected references:
8a
Hilderbrand RL.
The Role of Phosphonates in Living Systems
CRC Press;
Boca Raton, FL:
1982.
8b
Corbridge DEC.
Phosphorus 2000-Chemistry, Biochemistry and Technology
Elsevier;
Amsterdam:
2000.
8c
Osiecka R.
Janas KM.
Plant Physiol. Biochem.
1998,
36:
805
8d
Aminophosphonic and Aminophosphinic Acids, Chemistry and Biological Activity
Kukhar VP.
Hudson HR.
John Wiley & Sons;
Chichester, UK:
2000.
8e
Martel S.
Clément J.-L.
Muller A.
Culcasi M.
Pietri S.
Bioorg. Med. Chem.
2002,
10:
1451
Selected references:
9a
Boutevin B.
Hamoui B.
Parisi J.-P.
Améduri B.
Eur. Polym. J.
1996,
32:
159
9b
Derouet D.
Cauret L.
Brosse J.-C.
Eur. Polym. J.
2003,
39:
671
9c
Frantz R.
Carré F.
Durand J.-O.
Lanneau GF.
New J. Chem.
2001,
25:
188
9d
Kanzaki T.
Matsuda A.
Kotani Y.
Tatsumisago M.
Minami T.
Chem. Lett.
2000,
1314
Compound 1 is well known (see ref.7c ) and 2 is similar. For details on 3 and 4 , see:
10a
Kumaraswamy S.
Senthil Kumar K.
Raja S.
Kumara Swamy KC.
Tetrahedron
2001,
57:
8181
10b
Kumara Swamy KC.
Kumaraswamy S.
Raja S.
Senthil Kumar K.
J. Chem. Crystallogr.
2001,
31:
51
11
Sheldrick GM.
SHELX-97
University of Göttingen;
Germany:
1997.
12 It can be noted that the proton attached to the carbon α to the phosphorus can be removed in the presence of a base (Horner-Wadsworth-Emmons reaction); in the present case it is suggested that the proton migrates due to thermal rearrangement.
13
Perrin DD.
Armarego WLF.
Perrin DR.
Purification of Laboratory Chemicals
Pergamon;
Oxford, UK:
1986.