Semin Vasc Med 2004; 4(2): 153-159
DOI: 10.1055/s-2004-835373
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001 USA.

Cardiac Saphenous Vein Bypass Graft Disease

G. T. Lau1 , 2 , H. C. Lowe1 , 2 , 3 , L. Kritharides1 , 2 , 3
  • 1Department of Cardiology, Concord Repatriation General Hospital, Hospital Rd, Concord, NSW 2139
  • 2Vascular Biology Laboratory, ANZAC Research Institute, University of Sydney, Concord, NSW 2139
  • 3Centre for Vascular Research, University of New South Wales, Randwick, NSW 2052, Australia
Further Information

Publication History

Publication Date:
11 October 2004 (online)

Coronary artery bypass grafting is an effective treatment for myocardial ischaemia and is particularly important in patients with multivessel disease and diabetes. However, up to 40% of saphenous vein grafts will occlude within 10 years of surgery. The predominant mechanisms for saphenous vein graft disease are thrombosis, intimal hyperplasia, and accelerated atherosclerosis. The pathology of these changes and the role of key factors such as nitric oxide, cellular proliferation, and the role of hypercholesterolemia and hypertriglyceridaemia, are reviewed. Saphenous vein graft disease is among the first cardiovascular conditions to show significant benefit from gene therapy and promises to show remarkable developments in the near future.

REFERENCES

  • 1 Favaloro R G. Critical analysis of coronary artery bypass graft surgery: a 30-year journey.  J Am Coll Cardiol. 1998;  31(4 suppl B) 1B-63B
  • 2 Possati G, Gaudino M, Prati F et al.. Long-term results of the radial artery used for myocardial revascularization.  Circulation. 2003;  108(11) 1350-1354
  • 3 The Bypass Angioplasty Revascularization Investigation (BARI) Investigators . Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease.  N Engl J Med. 1996;  335 217-225
  • 4 RITA Trial Group. Coronary angioplasty versus coronary artery bypass surgery: the Randomized Intervention Treatment of Angina (RITA) trial.  Lancet. 1993;  341(8845) 573-580
  • 5 Morris J J, Smith L R, Jones R H et al.. Influence of diabetes and mammary artery grafting on survival after coronary bypass.  Circulation. 1991;  84(5 suppl) III275-III284
  • 6 Motwani J G, Topol E J. Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention.  Circulation. 1998;  97(9) 916-931
  • 7 Safian R D. Accelerated atherosclerosis in saphenous vein bypass grafts: a spectrum of diffuse plaque instability.  Prog Cardiovasc Dis. 2002;  44(6) 437-448
  • 8 Landymore R W, MacAulay M A, Fris J. Effect of aspirin on intimal proliferation and tissue cholesterol in long-term experimental bypass grafts.  Eur J Cardiothorac Surg. 1992;  6(8) 422-426
  • 9 Batayias G E, Barboriak J J, Korns M E, Pintar K. The spectrum of pathologic changes in aortocoronary saphenous vein grafts.  Circulation. 1977;  56(3 Suppl) II18-II22
  • 10 Moor E, Hamsten A, Blomback M, Herzfeld I, Wiman B, Ryden L. Haemostatic factors and inhibitors and coronary artery bypass grafting: preoperative alterations and relations to graft occlusion.  Thromb Haemost. 1994;  72(3) 335-342
  • 11 Boisclair M D, Lane D A, Philippou H et al.. Mechanisms of thrombin generation during surgery and cardiopulmonary bypass.  Blood. 1993;  82(11) 3350-3357
  • 12 Golledge J, Gosling M, Turner R J, Standfield N J, Powell J T. Arterial flow induces changes in saphenous vein endothelium proteins transduced by cation channels.  Eur J Vasc Endovasc Surg. 2000;  19(5) 545-550
  • 13 Golledge J, Turner R J, Gosling M, Powell J T. Rapid changes in the coagulant proteins on saphenous vein endothelium in response to arterial flow.  Angiology. 1999;  50(9) 693-701
  • 14 Tsui J C, Souza D S, Filbey D, Bomfim V, Dashwood M R. Preserved endothelial integrity and nitric oxide synthase in saphenous vein grafts harvested by a ‘no-touch’ technique.  Br J Surg. 2001;  88(9) 1209-1215
  • 15 Marx N, Neumann F J, Zohlnhofer D et al.. Enhancement of monocyte procoagulant activity by adhesion on vascular smooth muscle cells and intercellular adhesion molecule-1-transfected Chinese hamster ovary cells.  Circulation. 1998;  98(9) 906-911
  • 16 Yamada T, Itoh T, Nakano S, Tokunaga O. Time-dependent thickening of the intima in aortocoronary saphenous vein grafts: clinicopathological analysis of 24 patients.  Heart Vessels. 1995;  10(1) 41-45
  • 17 Hozumi T, Yoshikawa J, Yoshida K et al.. Use of intravascular ultrasound for in vivo assessment of changes in intimal thickness of angiographically normal saphenous vein grafts one year after aortocoronary bypass surgery.  Heart. 1996;  76(4) 317-320
  • 18 Willard J E, Netto D, Demian S E et al.. Intravascular ultrasound imaging of saphenous vein grafts in vitro: comparison with histologic and quantitative angiographic findings.  J Am Coll Cardiol. 1992;  19(4) 759-764
  • 19 Marin M L, Veith F J, Panetta T F et al.. Saphenous vein biopsy: a predictor of vein graft failure.  J Vasc Surg. 1993;  18(3) 407-414
  • 20 Campbell G R, Campbell J H. The phenotypes of smooth muscle expressed in human atheroma.  Ann N Y Acad Sci. 1990;  598 143-158
  • 21 Amano J, Suzuki A, Sunamori M, Tsukada T, Numano F. Cytokinetic study of aortocoronary bypass vein grafts in place for less than six months.  Am J Cardiol. 1991;  67(15) 1234-1236
  • 22 Mehta D, George S J, Jeremy J Y et al.. External stenting reduces long-term medial and neointimal thickening and platelet derived growth factor expression in a pig model of arteriovenous bypass grafting.  Nat Med. 1998;  4(2) 235-239
  • 23 Tanner F C, Boehm M, Akyurek L M et al.. Differential effects of the cyclin-dependent kinase inhibitors p27(Kip1), p21(Cip1), and p16(Ink4) on vascular smooth muscle cell proliferation.  Circulation. 2000;  101(17) 2022-2025
  • 24 Crook M F, Akyurek L M. Gene transfer strategies to inhibit neointima formation.  Trends Cardiovasc Med. 2003;  13(3) 102-106
  • 25 Tanner F C, Meier P, Greutert H, Champion C, Nabel E G, Luscher T F. Nitric oxide modulates expression of cell cycle regulatory proteins: a cytostatic strategy for inhibition of human vascular smooth muscle cell proliferation.  Circulation. 2000;  101(16) 1982-1989
  • 26 Salvemini D, Radziszewski W, Korbut R, Vane J. The use of oxyhaemoglobin to explore the events underlying inhibition of platelet aggregation induced by NO or NO-donors.  Br J Pharmacol. 1990;  101(4) 991-995
  • 27 Lefer A M. Role of selectins in myocardial ischemia-reperfusion injury.  Ann Thorac Surg. 1995;  60(3) 773-777
  • 28 Lefer A M, Tsao P S, Lefer D J, Ma X L. Role of endothelial dysfunction in the pathogenesis of reperfusion injury after myocardial ischemia.  FASEB J. 1991;  5(7) 2029-2034
  • 29 Sarkar R, Meinberg E G, Stanley J C, Gordon D, Webb R C. Nitric oxide reversibly inhibits the migration of cultured vascular smooth muscle cells.  Circ Res. 1996;  78(2) 225-230
  • 30 Best P J, Hasdai D, Sangiorgi G et al.. Apoptosis. Basic concepts and implications in coronary artery disease.  Arterioscler Thromb Vasc Biol. 1999;  19(1) 14-22
  • 31 Guo J P, Murohara T, Buerke M, Scalia R, Lefer A M. Direct measurement of nitric oxide release from vascular endothelial cells.  J Appl Physiol. 1996;  81(2) 774-779
  • 32 Dignan R J, Dyke C M, Abd-Elfattah A S et al.. Coronary artery endothelial cell and smooth muscle dysfunction after global myocardial ischemia.  Ann Thorac Surg. 1992;  53(2) 311-317
  • 33 Nakanishi K, Zhao Z Q, Vinten-Johansen J, Lewis J C, McGee D S, Hammon Jr J W. Coronary artery endothelial dysfunction after global ischemia, blood cardioplegia, and reperfusion.  Ann Thorac Surg. 1994;  58(1) 191-199
  • 34 Kown M H, Yamaguchi A, Jahncke C L et al.. L-arginine polymers inhibit the development of vein graft neointimal hyperplasia.  J Thorac Cardiovasc Surg. 2001;  121(5) 971-980
  • 35 Asahara T, Bauters C, Pastore C et al.. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery.  Circulation. 1995;  91(11) 2793-2801
  • 36 Grotendorst G R, Soma Y, Takehara K, Charette M. EGF and TGF-alpha are potent chemoattractants for endothelial cells and EGF-like peptides are present at sites of tissue regeneration.  J Cell Physiol. 1989;  139(3) 617-623
  • 37 Kalmes A, Daum G, Clowes A W. EGFR transactivation in the regulation of SMC function.  Ann N Y Acad Sci. 2001;  947 42-54
  • 38 Lindner V, Reidy M A. Platelet-derived growth factor ligand and receptor expression by large vessel endothelium in vivo.  Am J Pathol. 1995;  146(6) 1488-1497
  • 39 Banai S, Wolf Y, Golomb G et al.. PDGF-receptor tyrosine kinase blocker AG1295 selectively attenuates smooth muscle cell growth in vitro and reduces neointimal formation after balloon angioplasty in swine.  Circulation. 1998;  97 1960-1969
  • 40 Lindner V, Lappi D A, Baird A, Majack R A, Reidy M A. Role of basic fibroblast growth factor in vascular lesion formation.  Circ Res. 1991;  68(1) 106-113
  • 41 Lowe H C, Chesterman C N, Hopkins A P, Juergens C P, Khachigian L M. Acute local release of fibroblast growth factor-2 but not transforming growth factor-beta1 following coronary stenting.  Thromb Haemost. 2001;  85(3) 574-576
  • 42 Lindner V. Role of basic fibroblast growth factor and platelet-derived growth factor (B-chain) in neointima formation after arterial injury.  Z Kardiol. 1995;  (84 Suppl 4) 137-144
  • 43 Lindner V, Reidy M A. Expression of basic fibroblast growth factor and its receptor by smooth muscle cells and endothelium in injured rat arteries. An en face study.  Circ Res. 1993;  73(3) 589-595
  • 44 Lindner V, Reidy M A. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor.  Proc Natl Acad Sci USA. 1991;  88(9) 3739-3743
  • 45 Neschis D G, Safford S D, Hanna A K, Fox J C, Golden M A. Antisense basic fibroblast growth factor gene transfer reduces early intimal thickening in a rabbit femoral artery balloon injury model.  J Vasc Surg. 1998;  27(1) 126-134
  • 46 Khachigian L M, Collins T. Inducible expression of Egr-1-dependent genes. A paradigm of transcriptional activation in vascular endothelium.  Circ Res. 1997;  81(4) 457-461
  • 47 Santiago F S, Lowe H C, Kavurma M M et al.. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury.  Nat Med. 1999;  5(12) 1438
  • 48 Lowe H C, Fahmy R G, Kavurma M M, Baker A, Chesterman C N, Khachigian L M. Catalytic oligodeoxynucleotides define a key regulatory role for early growth response factor-1 in the porcine model of coronary in-stent restenosis.  Circ Res. 2001;  89(8) 670-677
  • 49 Bjorkerud S. Effects of transforming growth factor-beta 1 on human arterial smooth muscle cells in vitro.  Arterioscler Thromb. 1991;  11(4) 892-902
  • 50 Atkinson J B, Forman M B, Vaughn W K, Robinowitz M, McAllister H A, Virmani R. Morphologic changes in long-term saphenous vein bypass grafts.  Chest. 1985;  88(3) 341-348
  • 51 Newby A C. Molecular and cell biology of native coronary and vein-graft atherosclerosis: regulation of plaque stability and vessel-wall remodelling by growth factors and cell-extracellular matrix interactions.  Coron Artery Dis. 1997;  8(3-4) 213-224
  • 52 Hong M K, Mintz G S, Hong M K et al.. Intravascular ultrasound assessment of the presence of vascular remodeling in diseased human saphenous vein bypass grafts.  Am J Cardiol. 1999;  84(9) 992-998
  • 53 Shuhaiber J H, Evans A N, Massad M G, Geha A S. Mechanisms and future directions for prevention of vein graft failure in coronary bypass surgery.  Eur J Cardiothorac Surg. 2002;  22(3) 387-396
  • 54 Porter K E, Loftus I M, Peterson M, Bell P R, London N J, Thompson M M. Marimastat inhibits neointimal thickening in a model of human vein graft stenosis.  Br J Surg. 1998;  85(10) 1373-1377
  • 55 Elices M J, Osborn L, Takada Y et al.. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site.  Cell. 1990;  60(4) 577-584
  • 56 Bevilacqua M P. Endothelial-leukocyte adhesion molecules.  Annu Rev Immunol. 1993;  11 767-804
  • 57 Kukielka G L, Hawkins H K, Michael L et al.. Regulation of intercellular adhesion molecule-1 (ICAM-1) in ischemic and reperfused canine myocardium.  J Clin Invest. 1993;  92(3) 1504-1516
  • 58 Solymoss B C, Nadeau P, Millette D, Campeau L. Late thrombosis of saphenous vein coronary bypass grafts related to risk factors.  Circulation. 1988;  78(3 Pt 2) I140-I143
  • 59 Campeau L, Enjalbert M, Lesperance J et al.. The relation of risk factors to the development of atherosclerosis in saphenous-vein bypass grafts and the progression of disease in the native circulation. A study 10 years after aortocoronary bypass surgery.  N Engl J Med. 1984;  311(21) 1329-1332
  • 60 Neitzel G F, Barboriak J J, Pintar K, Qureshi I. Atherosclerosis in aortocoronary bypass grafts. Morphologic study and risk factor analysis 6 to 12 years after surgery.  Arteriosclerosis. 1986;  6(6) 594-600
  • 61 Cashin-Hemphill L, Mack W J, Pogoda J M, Sanmarco M E, Azen S P, Blankenhorn D H. Beneficial effects of colestipol-niacin on coronary atherosclerosis. A 4-year follow-up.  JAMA. 1990;  264 3013-3017
  • 62 Campeau L, Hunninghake D B, Knatterud G L et al.. Aggressive cholesterol lowering delays saphenous vein graft atherosclerosis in women, the elderly, and patients with associated risk factors. NHLBI post coronary artery bypass graft clinical trial. Post CABG Trial Investigators.  Circulation. 1999;  99(25) 3241-3247
  • 63 Linden T, Bondjers G, Karlsson T, Wiklund O. Serum triglycerides and HDL cholesterol-major predictors of long-term survival after coronary surgery.  Eur Heart J. 1994;  15(6) 747-752
  • 64 Cataldo G, Braga M, Pirotta N, Lavezzari M, Rovelli F, Marubini E. Factors influencing 1-year patency of coronary artery saphenous vein grafts. Studio Indobufene nel Bypass Aortocoronarico (SINBA).  Circulation. 1993;  88(5 Pt 2) II93-II98
  • 65 Grundy S M, Vega G L. Two different views of the relationship of hypertriglyceridemia to coronary heart disease. Implications for treatment.  Arch Intern Med. 1992;  152(1) 28-34
  • 66 Grundy S M, Benjamin I J, Burke G L et al.. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association.  Circulation. 1999;  100(10) 1134-1146
  • 67 Haffner S M. Insulin resistance, inflammation, and the prediabetic state.  Am J Cardiol. 2003;  92(4A) 18J-26J
  • 68 Vaya A, Mira Y, Ferrando F et al.. Hyperlipidaemia and venous thromboembolism in patients lacking thrombophilic risk factors.  Br J Haematol. 2002;  118(1) 255-259
  • 69 Puccetti L, Bruni F, Pasqui A L et al.. Dyslipidemias and fibrinolysis.  Ital Heart J. 2002;  3(10) 579-586
  • 70 Griffin J H, Fernandez J A, Deguchi H. Plasma lipoproteins, hemostasis and thrombosis.  Thromb Haemost. 2001;  86(1) 386-394
  • 71 Griffin J H, Kojima K, Banka C L, Curtiss L K, Fernandez J A. High-density lipoprotein enhancement of anticoagulant activities of plasma protein S and activated protein C.  J Clin Invest. 1999;  103(2) 219-227
  • 72 Schaefer E J, McNamara J R, Shah P K et al.. Elevated remnant-like particle cholesterol and triglyceride levels in diabetic men and women in the Framingham Offspring Study.  Diabetes Care. 2002;  25(6) 989-994
  • 73 Mompeo B, Ortega F. Immunohistochemical and ultrastructural study of microvessels in diabetic veins.  Ultrastruct Pathol. 1999;  23(1) 25-31
  • 74 Wengerter K R, Veith F J, Gupta S K, Ascer E, Rivers S P. Influence of vein size (diameter) on infrapopliteal reversed vein graft patency.  J Vasc Surg. 1990;  11(4) 525-531
  • 75 Milazzo D, Biasucci L M, Luciani N et al.. Elevated levels of C-reactive protein before coronary artery bypass grafting predict recurrence of ischemic events.  Am J Cardiol. 1999;  84 459-461
  • 76 Cameron A A, Davis K B, Rogers W J. Recurrence of angina after coronary artery bypass surgery: predictors and prognosis (CASS Registry). Coronary Artery Surgery Study.  J Am Coll Cardiol. 1995;  26(4) 895-899
  • 77 Eritsland J, Arnesen H, Seljeflot I et al.. Influence of serum lipoprotein(a) and homocyst(e)ine levels on graft patency after coronary artery bypass grafting.  Am J Cardiol. 1994;  74(11) 1099-1102
  • 78 Mann M J, Whittemore A D, Donaldson M C et al.. Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomised, controlled trial.  Lancet. 1999;  354(9189) 1493-1498
  • 79 Ehsan A, Mann M J, Dell'Acqua G, Dzau V J. Long-term stabilization of vein graft wall architecture and prolonged resistance to experimental atherosclerosis after E2F decoy oligonucleotide gene therapy.  J Thorac Cardiovasc Surg. 2001;  121(4) 714-722
  • 80 Shigematsu K, Yasuhara H, Shigematsu H. Topical application of antiangiogenic agent AGM-1470 suppresses anastomotic intimal hyperplasia after ePTFE grafting in a rabbit model.  Surgery. 2001;  129(2) 220-230
  • 81 Kolodgie F D, Gold H K, Burke A P et al.. Intraplaque hemorrhage and progression of coronary atheroma.  N Engl J Med. 2003;  349(24) 2316-2325
  • 82 Dzau V J. Predicting the future of human gene therapy for cardiovascular diseases: what will the management of coronary artery disease be like in 2005 and 2010?.  Am J Cardiol. 2003;  92(9B) 32N-35N

 Professor
Leonard Kritharides

Department of Cardiology, 3 West, Concord Repatriation General Hospital

Hospital Road, Concord, NSW 2139, Australia