Semin Vasc Med 2004; 4(2): 203-209
DOI: 10.1055/s-2004-835379
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001 USA.

Familial Combined Hyperlipidemia: Controversial Aspects of its Diagnosis and Pathogenesis

Carlos A. Aguilar Salinas1 , Margarita Zamora1 , Rita A. Gómez-Díaz1 , Roopa Mehta1 , Francisco J. Gómez Pérez1 , Juan A. Rull1
  • 1Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
  • 2Servicio de Endocrinología Pediátrica, Hospital de Pediátrica, Mexico City, Mexico
Further Information

Publication History

Publication Date:
11 October 2004 (online)

Familial combined hyperlipidemia is the most frequent cause of primary dyslipidemia in Mexico. Its manifestations include hypercholesterolemia, hypertriglyceridemia, or a combination of both. Despite its high frequency, a proper diagnosis is rarely made. Assessment of the lipid profiles of at least three first-degree relatives is necessary. The diagnosis of familial combined hyperlipidemia in a family not only leads to the identification of other affected family members but, more important, allows cardiovascular risk stratification of those affected. Prospective studies have confirmed the atherogenicity of the disease. A critical review of the current literature in this field is presented in this article. Although three screenings of the genome have been completed, the genes responsible for this disorder have not been identified. Limitations with respect to the characterization of affected subjects and the heterogeneity of the disease are among possible explanations. However, familial combined hyperlipidemia, because of its high prevalence, must be given greater priority. It represents a great challenge for physicians involved in the treatment of dyslipidemic patients.

REFERENCES

  • 1 Davignon J, Genest Jr J. Genetics of lipoprotein disorders.  Endocrinol Metab Clin North Am. 1998;  27 521-550
  • 2 Arner P. Is familial combined hyperlipidaemia a genetic disorder of adipose tissue?.  Curr Opin Lipidol. 1997;  8 89-94
  • 3 Bredie S J, Demacker P N, Stalenhoef A F. 1997. Metabolic and genetic aspects of familial combined hyperlipidaemia with emphasis on low-density lipoprotein heterogeneity.  Eur J Clin Invest. 1997;  27 802-811
  • 4 Goldstein J L, Schrott H G, Hazzard W T, Bierman E L, Motulsky A G. Hyperlipidemia in coronary heart disease. II: genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia.  J Clin Invest. 1973;  52 1544-1568
  • 5 Rose H G, Kranz P, Weinstock M, Juliano J, Haft J I. Inheritance of combined hyperlipoproteinemia: evidence for a new lipoprotein phenotype.  Am J Med. 1973;  54 148-160
  • 6 Nikkila E A, Aro A. Family study of serum lipids and lipoproteins in coronary heratheart disease.  Lancet. 1973;  1 954-959
  • 7 Erkelens D W. Metabolic basis for hypertriglyceridaemia in familial combined hyperlipidaemia.  Eur Heart J. 1998;  19( suppl H) H23-H26
  • 8 Grundy S M, Chait A, Brunzell J D. Familial Combined Hyperlipidemia Workshop.  Arteriosclerosis. 1987;  7 203-207
  • 9 Sniderman A D, Ribalta J, Castro Cabezas M. How should FCHL be defined and how should we think about its metabolic bases?.  Nutr Metab Cardiovasc Dis. 2001;  11 259-273
  • 10 Sniderman A D, Castro-Cabezas M, Riblata J et al.. A proposal to redefine familial combined hyperlipidemia-third workshop on FCHL.  Eur J Clin Invest. 2002;  32 71-73
  • 11 de Graaf J, Stalenhoef A F. Defects of lipoprotein metabolism in familial combined hyperlipidaemia.  Curr Opin Lipidol. 1998;  9 189-196
  • 12 Albers J J, Marcovina S M, Kennedy H, Mei J V, Henderson L O, Hannon W H. International Federation of Clinical Chemistry standardization project for measurement of apolipoproteinsA-I, and B. Comparability of apolipoprotein B values by use of International Reference Material.  Clin Chem. 1994;  40 586-592
  • 13 Bredie S J, Demacker P N, Stalenhoef A F. 1997. Metabolic and genetic aspects of familial combined hyperlipidaemia with emphasis on low-density lipoprotein heterogeneity.  Eur J Clin Invest. 1997;  27 802-811
  • 14 Valles V, Aguilar-Salinas C A, Gómez-Pérez F J et al.. Apolipoprotein B and AI distribution in the Mexican urban adults: results of a nation-wide survey.  Metabolism. 2002;  51 560-568
  • 15 McNeely M, Edwards K, Marcovina S, Brunzell J D, Motulsky A, Austin M. Lipoprotein and apolipoprotein abnormalities in familial combined hyperlipidemia: a 20-year prospective study.  Atherosclerosis. 2001;  159 471-481
  • 16 Kwiterovich P O. Clinical relevance of the biochemical, metabolic and genetic factors that influence low-density lipoprotein heterogeneity.  Am J Cardiol. 2002;  90(suppl) 30i-47i
  • 17 Aguilar-Salinas C A, Díaz-Polanco A, Quintana E et al.. Genetic factors play an important role in the pathogenesis of hyperlipidemia post-transplantation.  Am J Kidney Dis. 2002;  40 169-177
  • 18 Sniderman A D, Wolfson C, Teng B, Franklin F A, Bachorik P S, Kwiterovich P O. Association of hyperapobetalipoproteinemia with endogenous hypertriglyceridemia and atherosclerosis.  Ann Intern Med. 1982;  97 833-839
  • 19 Porkka K V, Nuotio I, Pajukanta P et al.. Phenotype expression in familial combined hyperlipidemia.  Atherosclerosis. 1997;  133 245-253
  • 20 Hokanson J, Austin M, Zambon A, Brunzell J. Plasma triglycerides and LDL heterogeneity in familial combined hyperlipidemia.  Arterioscler Thromb. 1993;  13 427-434
  • 21 Babirak S, Brown G, Brunzell J. Familial combined hyperlipidemia and abnormal lipoprotein lipase.  Arterioscler Thromb. 1992;  12 1176-1183
  • 22 Ascaso J F, Merchante A, Lorente R, Real J T, Martinez-Valls J, Carmena R. A study of insulin resistance using the minimal model in nondiabetic familial combined hyperlipidemic patients.  Metabolism. 1998;  47 508-513
  • 23 Meijssen S, Castro Cabezas M, Twickler T, Jansen H, Erkelens D W. In vivo evidence of defective postprandial and postabsorptive free fatty acid metabolism in familial combined hyperlipidemia.  J Lipid Res. 2000;  41 1096-1102
  • 24 Aouizerat B E, Allayee H, Cantor R M et al.. Linkage of a candidate gene locus to familial combined hyperlipidemia: lecithin:cholesterol acyltransferase on 16q.  Arterioscler Thromb Vasc Biol. 1999;  19 2730-2736
  • 25 Pei W, Baron H, Muller-Myhsok B et al.. Support for linkage of familial combined hyperlipidemia to chromosome 1q21-q23 in Chinese and German families.  Clin Genet. 2000;  57 29-34
  • 26 Pihlajamäki J, Rissanen J, Valve R, Heikkinen S, Karjalainen L, Laakso M. Different regulation of free fatty acid levels and glucose oxidation by the Trp64Arg polymorphism of the beta3-adrenergic receptor gene and the promoter variant (A-3826G) of the uncoupling protein 1 gene in familial combined hyperlipidemia.  Metabolism. 1998;  47 1397-1402
  • 27 Coon H, Myers R, Borecki I et al.. Replication of linkage of familial combined hyperlipidemia to chromosome 1q with additional heterogeneous effect of apolipoprotein A-I/C-III/A-IV locus.  Arterioscler Thromb Vasc Biol. 2000;  20 2275-2280
  • 28 Venkatesan S, Cullen P, Pacy P, Halliday D, Scott J. Stable isotopes show a direct relation between VLDL apoB overproduction and serum triglycerides and indicate a metabolically and biochemically coherent basis for familial combined hyperlipidemia.  Arterioscler Thromb. 1993;  13 1110-1118
  • 29 Gehrisch S, Kostka H, Tiebel M et al.. Mutations of the human hepatic lipase gene in patients with combined hypertriglyceridemia/hyperalphalipoproteinemia and in patients with familial combined hyperlipidemia.  J Mol Med. 1999;  77 728-734
  • 30 Cortner J A, Coates P M, Bennett M J, Cryer D R, Le N A. Familial combined hyperlipidemia: use of stable isotopes to demonstrate overproduction of very low-density lipoprotein apolipoprotein B by the liver.  J Inherit Metab Dis. 1991;  14 915-922
  • 31 Pajukanta P, Porkka K, Antikainen M et al.. No evidence of linkage between familial combined hyperlipidemia and genes encoding lipolytic enzymes in Finnish families.  Arterioscler Thromb Vasc Biol. 1997;  17 841-850
  • 32 Del Rincón-Jarero J P, Aguilar-Salinas C A, Guillén-Pineda L E, Gómez Pérez F J, Rull J A. Lack of agreement between the plasma lipid based criteria and the apoprotein B for the diagnosis of Familial Combined Hyperlipidemia (FCHL) in members of FCHL kindreds.  Metabolism. 2002;  51 218-224
  • 33 Wijsman E M, Brunzell J D, Jarvik G P, Austin M A, Motulsky A G, Deeb S S. Evidence against linkage of familial combined hyperlipidemia to the apolipoprotein AI-CIII-AIV gene complex.  Arterioscler Thromb Vasc Biol. 1998;  18 215-226
  • 34 Hopkins P, Heiss G, Ellison C et al.. Coronary artery disease in familial combined hyperlipidemia and familial hypertriglyceridemia.  Circulation. 2003;  108 519-523
  • 35 Aguilar-Salinas Carlos A, Olaiz G, Valles V et al.. High prevalence of low HDL cholesterol concentrations and mixed hyperlipidemia in a Mexican nation wide survey.  J Lipid Res. 2001;  42 1298-1307
  • 36 Austin M, McKnight B, Edward K et al.. Cardiovascular disease mortality in familial forms of hypertriglyceridemia: a 20 year prospective study.  Circulation. 2000;  101 2777-2782
  • 37 Purnell J, Kahn S, Schwartz R, Brunzell R. Relationship of insulin sensitivity and apoB levels to intraabdominal fat in subjects with familial combined hyperlipidemia.  Arterioscler Thromb Vasc Biol. 2001;  21 567-572
  • 38 Aguilar-Salinas C A, Barrett H P, Pulai J, Zhu X, Schonfeld G. A familial combined hyperlipidemic kindred with impaired apolipoprotein B catabolism. Kinetics of apolipoprotein B during placebo and pravastatin therapy.  Arterioscler Thromb Vasc Biol. 1997;  17 72-82
  • 39 Chait A, Albers J J, Brunzell J D. Very low density overproduction in genetic forms of hypertriglyceridemia.  Eur J Clin Invest. 1980;  10 161-172
  • 40 Kissebah A H, Alfarsi A, Adams P W. Integrated regulation of very low density lipoprotein triglycerides and apolipoprotein B kinetics in man: normolipidemic subjects, familial hypertriglyceridemia and familial combined hyperlipidemia.  Metabolism. 1981;  30 856-868
  • 41 Allayee H, Dominguez K M, Aouizerat B E et al.. Contribution of the hepatic lipase gene to the atherogenic lipoprotein phenotype in familial combined hyperlipidemia.  J Lipid Res. 2000;  41 245-252
  • 42 Ayyobi A F, McGladdery S H, McNeely M J, Austin M A, Motulsky A G, Brunzell J D. Small, dense LDL and elevated apolipoprotein B are the common characteristics for the three major lipid phenotypes of familial combined hyperlipidemia.  Arterioscler Thromb Vasc Biol. 2003;  23 1289-1294
  • 43 Vakkilainen J, Jauhiainen M, Yliatalo K et al.. LDL particle size in familial combined hyperlipidemia; effects of serum lipid, lipoprotein-modifying enzymes and lipid transfer proteins.  J Lipid Res. 2002;  43 598-603
  • 44 Pajukanta P, Terwilliger J D, Perola M et al.. Genomewide scan for familial combined hyperlipidemia genes in Finnish families, suggesting multiple susceptibility loci influencing triglyceride, cholesterol, and apolipoprotein B levels.  Am J Hum Genet. 1999;  64 1453-1463
  • 45 Tahvanainen E, Pajukanta P, Porkka K et al.. 1998. Haplotypes of the ApoA-I/C-III/A-IV gene cluster and familial combined hyperlipidemia.  Arterioscler Thromb Vasc Biol. 1998;  18 1810-1817
  • 46 Pennacchio L A, Rubin E M. Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels in humans and mice.  Arterioscler Thromb Vasc Biol. 2003;  23 529-534

Carlos Alberto Aguilar SalinasM.D. 

Vasco de Quiroga 15, Mexico City 14000, Mexico